
www.manaraa.com

Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2016

Initial Development and Validation of the Student
Wellbeing Teacher-Report Scales
Anthony Joseph Roberson
Louisiana State University and Agricultural and Mechanical College, tonyjroberson@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Psychology Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Roberson, Anthony Joseph, "Initial Development and Validation of the Student Wellbeing Teacher-Report Scales" (2016). LSU
Master's Theses. 4574.
https://digitalcommons.lsu.edu/gradschool_theses/4574

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4574&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4574&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4574&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4574&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/404?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4574&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/4574?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F4574&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


www.manaraa.com

 

INITIAL DEVELOPMENT AND VALIDATION OF THE STUDENT WELLBEING 

TEACHER-REPORT SCALES 

 

 

 

 

 

 

 

 

 

 

A Thesis 

 

Submitted to the Graduate Faculty of the  

Louisiana State University and  

Agricultural and Mechanical College 

in partial fulfillment of the  

requirements for the degree of  

Master of Arts 

 

in 

 

The Department of Psychology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by 

Anthony J. Roberson 

B.S., Truman State University, 2014 

December 2016 

 



www.manaraa.com

 

ii 
 

 

 

 

 

 

 

Dedicated in memory of Sr. Carole (1940–2016) for her commitment to education, appreciation 

of the importance of mental health, and embrace of life lived well.



www.manaraa.com

 

iii 
 

 

Table of Contents 

 

List of Tables ................................................................................................................................. iv 

 

Abstract ............................................................................................................................................v 

 

Introduction ......................................................................................................................................1 

Universal Screening for Youth Mental Health ....................................................................1 

Conceptualizing Youth Mental Health for Universal Screening .........................................5 

The Current Study ..............................................................................................................10 

 

Method ...........................................................................................................................................14 

Participants .........................................................................................................................14 

Measures ............................................................................................................................14 

Procedure ...........................................................................................................................17 

Preliminary Analyses .........................................................................................................19 

Primary Analyses ...............................................................................................................20 

 

Results ............................................................................................................................................27 

SWTRS Latent Structure ...................................................................................................27 

SWTRS Scales Descriptive Statistics ................................................................................28 

SWTRS Construct Validity................................................................................................29 

SWTRS Concurrent and Incremental Validity ..................................................................30 

 

Discussion ......................................................................................................................................47 

Structural Validity ..............................................................................................................48 

Concurrent and Incremental Validity.................................................................................52 

Limitations and Future Directions .....................................................................................54 

 

References ......................................................................................................................................56 

 

Appendices 

Appendix A. IRB Approval ...............................................................................................63 

Appendix B. Teacher Demographic Survey ......................................................................64 

Appendix C. Student Behavior Survey ..............................................................................66 

 

Vita .................................................................................................................................................70 

 

 

 



www.manaraa.com

 

iv 
 

List of Tables 

 

1. Scale Descriptive Statistics for the SIBS, SEBS, AES, and SPS ......................................16 

 

2. Descriptive Statistics for Concurrent Outcome Variables Time On-Task, Absences, and 

Math and ELA Achievement .............................................................................................17 

 

3. EFA Pattern Matrix Results for the Two-Factor SWTRS Measurement Model ...............29 

 

4. Correlation Matrix of All Predictor and Outcome Variables.............................................31 

 

5. Fit Comparisons for Multilevel Models Predicting Percent of Time On-Task .................32 

 

6. Coefficient and Effect Size Estimates for Multilevel Models Predicting Percent of Time 

On-Task..............................................................................................................................33 

 

7. Fit Comparisons for Multilevel Models Predicting Number of Absences ........................36 

 

8. Coefficient and Effect Size Estimates for Multilevel Models Predicting Number of 

Absences ............................................................................................................................37 

 

9. Fit Comparisons for Multilevel Models Predicting Math Performance ............................40 

 

10. Coefficient and Effect Size Estimates for Multilevel Models Predicting Math 

Performance .......................................................................................................................41 

 

11. Fit Comparisons for Multilevel Models Predicting ELA Performance .............................44 

 

12. Coefficient and Effect Size Estimates for Multilevel Models Predicting ELA Performance

............................................................................................................................................45 

 

 

 

  

 

 

 

  

 



www.manaraa.com

 

v 
 

Abstract 

Given that youth mental health is associated with their success in school and in life more 

broadly, it is important that school-based psychological service providers embrace best-practice 

prevention and intervention strategies that target mental health when working with student 

populations One line of study in this area has begun exploring the incorporation of a dual-factor 

model of mental health within universal screening systems in schools. The dual-factor model is 

differentiated from the traditional unidimensional mental health model, which focuses on the 

presence or absence of psychopathology, by conceptualizing mental health alternatively as 

consisting of both psychopathology and wellbeing dimensions. The present study involved the 

preliminary development and validation of the Student Wellbeing Teacher-Report Scales 

(SWTRS)—a pair of brief behavior rating scales intended to function as screening tools for 

measuring two indicators of the wellbeing dimension of youths’ mental health at school: “feeling 

good” and “functioning well.” Specifically, the study involved drafting pilot items for the 

SWTRS and explored their latent factor structure, concurrent validity with school-related 

outcomes (i.e., attendance, academic achievement, and time on-task), as well as concurrent and 

incremental validity in comparison with psychopathology screeners. Results suggested that the 

SWTRS items may better represent two context-specific indicators of youths’ wellbeing—

academic engagement and prosocial behavior—rather than the hypothesized “feeling good” and 

“functioning well” dimensions. The SWTRS also demonstrated incremental validity and were 

uniformly stronger predictors of all school-related concurrent outcomes compared to the 

psychopathology scales. Implications for theory and future research are discussed.  

Keywords: youth wellbeing, school mental health, universal screening
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Introduction 

Universal Screening for Youth Mental Health 

The substantive importance of addressing mental health concerns among youth has been 

well established in a tremendous number of research findings. The National Institute of Mental 

Health found that among adolescents ages 13–18, more than 46% live with some form of mental 

illness (Merikangas et al., 2010). Youth mental illness has been linked with many deleterious 

outcomes, such as adolescents with depression being at higher risk for later substance 

dependence (Marmorstein, Iacono, & Malone, 2010), more internalizing and externalizing 

behavior symptoms in youth predicting clinical panic attacks (Mathyssek, Olino, Velhurst, & van 

Oort, 2012), and the formation of depressive traits in early adolescence predicting depressive 

episodes later in life (Rudolph & Klein, 2009). Further, lower performance on cognitive, 

academic achievement, and short-term memory assessments has been predicted by greater 

severity of anxiety, depression, and social withdrawal symptoms (Rapport, Denney, Chung, & 

Hustace, 2001). Externalizing behavior issues have also predicted low concurrent academic 

achievement in school (Bradshaw, Buckley, & Ialongo, 2008). Beyond these individual-level 

concerns, Keyes (2007) noted that the economic toll of mental health care in the U. S. in 1999 

amounted to approximately $160 billion, making it the third costliest health care expense after 

cardio-vascular disease and physical rehabilitation. Given this evidence that less-than-optimal 

mental health results in significant negative outcomes for the individual and society at large, 

developing and implementing systems of care that connect at-risk youth with mental health 

services should be a priority in order to curb later harmful effects associated with psychological 

disorder (Lane, Oakes, & Menzies, 2010). 
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 Given that the school environment is most frequently the de facto mental health care 

provider for young people (Burns et al., 1995), it follows that the goals of both prevention and 

intervention efforts may best be achieved through enhancing school-based mental health service 

delivery systems (Strein, Hoagwood, & Cohn, 2003). A prerequisite to delivering quality 

services to struggling students is determining which students are the best candidates to receive 

such support; that is, which students are most at-risk for future negative outcomes. Student 

selection can be accomplished in a variety of ways, but in conventional practice, identification 

typically begins with a referral from a teacher or parent experiencing concern with the student in 

class or at home (Strein et al., 2003). The school psychologist, or other school-based mental 

health professional, then takes on the case and begins the assessment and intervention process to 

understand and remedy the student’s presenting issues. Though this method has been widely 

employed over the years, alternative student identification models have been gaining traction to 

address some of the shortcomings of the traditional referral paradigm. 

 The worth and utility of local population screening procedures to identify students in 

need of mental health services is receiving increasing acknowledgement from both researchers 

and practitioners (Albers & Kettler, 2014; Dowdy et al., 2014). Typically administered to 

populations of students (e.g., all students in a classroom, all students in a school), universal 

screeners can offer school professionals useful information concerning the mental health 

functioning of the student body (Albers & Kettler, 2014). Among the many advantages universal 

screening can offer, the ability to calculate local norms is of great worth to practitioners looking 

to assess the prevalence and magnitude of specific dimensions of mental health functioning 

(Dowdy et al., 2010). Once norms are calculated, they can be used in different ways to help 

school professionals better understand their student population and identify students at-risk for 
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deleterious outcomes. One of these ways is to compare individual student scores to the rest of the 

student population. If the individual student shows significantly elevated symptoms relative to 

the symptom level of their peers, the school psychologist should follow-up with the student to 

get more information about the presenting problems. This same logic of comparing individual 

screener scores to some norm extends further to comparing between larger groups of students. A 

school psychologist may be interested in investigating the prevalence and severity of 

internalizing and externalizing behavior symptoms in their school and may want to compare 

these to other similar schools or between classrooms. Following screening, the class- or school-

wide norms from other classes or schools can be used to determine if there is a systemic issue 

influencing the problems (Dowdy et al., 2010). The data may suggest that a general 

environmental influence is having a global negative effect on students across the school, rather 

than relatively few students experiencing problems for idiosyncratic reasons.  

Perhaps most importantly, researchers and school practitioners are recognizing the 

importance of screening instruments as a critical component in effectively transforming school-

based mental health service delivery from the traditional reactionary model (i.e., students 

referred for services only after severe problems have manifested) to a paradigm that emphasizes 

early detection of symptoms to inform prevention efforts (Dowdy et al., 2014). This approach 

aligns with the goals of incorporating data-based decision making strategies (National 

Association of School Psychologists, 2010; Armistead & Smallwood, 2014) in service of a 

stronger public health model (Strein et al., 2003) and establishing multi-tiered systems of support 

(MTSS) within schools to enhance efficiency of service delivery resource allocation and positive 

behavioral interventions (Individuals with Disabilities Education Improvement Act, 2004). 

Moreover, the National Association of School Psychologists recommends MTSS as a best-
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practice approach to mental health service delivery in schools (Stoiber, 2014). Typical MTSS 

models contain three levels of service delivery arranged along a triangular continuum, with all 

students receiving universal interventions at the bottom tier. Students who continue to show 

significant difficulty in the domain of interest despite the universal supports are promoted to 

increasingly specialized and intensive intervention tiers (Stoiber, 2014). Screening instruments 

play an integral role in the successful implementation of a MTSS scheme within a school system 

as they can be used as the initial assessment gate for problem identification at the lowest tier 

(Albers & Kettler, 2014). Once the screening process identifies certain students as having 

elevated risk, a second gate of follow-up assessments can be employed to further hone in on the 

students most in need of services at higher tiers. 

One of the key areas of research with universal screening in schools is investigating the 

technical adequacy and applied utility of youth mental health screeners. Literature in this area 

suggests that screening for mental health may be integral in early detection efforts of deleterious 

symptoms. For instance, a study conducted with a random sample of 472 elementary school 

students involved teacher ratings of the students’ adaptive and problem behavior frequency using 

different behavior rating scales for comparison (Kamphaus, DiStefano, Dowdy, Eklund, & Dunn, 

2010). Results indicated that scores from the Behavioral and Emotional Screening System 

(BESS), a 27-item teacher-report screening instrument for rating the frequency of student 

problem behaviors, significantly correlated with several concurrent outcome measures from an 

omnibus problem behavior scale and student academic records. Some of these include moderate 

correlations with math and English language arts (ELA) grades (r = -.45), a strong correlation 

with the omnibus Behavior Assessment System for Children, Second Edition, Teacher Rating 

Scales (BASC-2 TRS-C) internalizing problems scale (r = .52), and very strong correlations with 
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the BASC-2 TRS-C externalizing problems (r = .76), school problems (r = .82), and adaptive 

skills (r = -.82) scales. Though several other studies of this kind have been conducted supporting 

the concurrent and predictive validity of scores derived from universal screeners measuring 

mental health problems (e.g., Eklund & Dowdy, 2013; Lane et al., 2009), scholarship on 

elementary teacher-report mental health screening is still nascent and warrants further 

development. 

Conceptualizing Youth Mental Health for Universal Screening 

Student contact with universal mental health screening and promotion initiatives during 

the elementary school years is one of the critical school-based strategies for limiting the 

progression of negative psychological and behavioral symptoms during important developmental 

years (Lane, Oakes, & Menzies, 2010). However, to reap the benefits of universal screening, it is 

important for practitioners to utilize high-quality assessment instruments. Glover and Albers 

(2007) outlined three broad domains to consider when evaluating the quality of a universal 

screening instrument: (a) appropriateness for the intended use (e.g., do the constructs measured 

help determine risk level?), (b) technical adequacy (e.g., to what extent are scores derived from 

the screener reliable and valid?), and (c) usability (e.g., how feasible is it to administer the 

screener in a real-world context?).  

Aspects of the appropriateness consideration have also been discussed in other works, 

such as the recommendation from Hayes, Nelson, and Jarrett (1987) that assessment processes 

should inform treatment in a useful way. Lane, Oakes, and Menzies (2010) note that, in addition 

to other feasibility considerations such as monetary cost, developers of screening instruments 

should endeavor to strike a balance between including as few items as possible while 

maintaining strong psychometric properties of the screener to minimize respondent fatigue or the 
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likelihood that assessment interferes with other school activities. Finally, while creating an 

instrument with sufficient technical adequacy is a more complex undertaking that cannot be 

demonstrated in a single study, establishing robust psychometric qualities is no less important 

than the other considerations. Technical adequacy can be determined by assessing the strength of 

an instrument’s reliability (e.g., internal consistency, inter-rater reliability) and validity 

dimensions (e.g., predictive/concurrent validity, incremental validity). Developing and validating 

screening instruments that have all three of the recommended qualities is crucial to progress 

research on universal mental health screening in schools.  

 Although much empirical attention has paid to the “technical adequacy” and “usability” 

dimensions of screening as outlined by Glover and Albers (2007), far less empirical work has 

focused on the “appropriateness” of mental health indicators being measured and used in school-

based screening practice. One of the central issues when deciding how to evaluate youth mental 

health using screeners is considering which dimensions of the mental health construct should be 

assessed (Glover & Albers, 2007). Historically, the field of school psychology has placed great 

emphasis on the amelioration of negative behavioral and psychological symptoms in children, 

especially those that have a harmful effect on school success (Ysseldyke & Reschly, 2014). This 

intention is noble, as it aims to limit and ameliorate low academic achievement and problem 

behaviors. Few would disagree that working to minimize the occurrence and severity of such 

negative outcomes among students is a benefit to their overall life functioning. Yet, there is some 

disagreement over whether this approach is the most conceptually sound and useful for 

promoting mental health, as some have argued that this tradition stems from an ideology that 

incorrectly views the absence of problems as synonymous with the presence of wellbeing 

(Seligman & Csikszentmihalyi, 2000; Seligman, 2002).  
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 Though school psychological practice based on this philosophy has been longstanding 

and indeed done much to improve many students’ lives, some posit that incorporating assessment 

of positive aspects of student functioning is necessary to better understand youth mental health 

(e.g., Suldo & Shaffer, 2008), especially for purposes of identifying students at greater and lesser 

risk. Consistent with this idea, the World Health Organization (WHO) has suggested an updated 

definition of mental health that incorporates this positive behavior lens. The WHO views mental 

health not as the lack of disease or disorder, but as “a state of well-being in which the individual 

realizes his or her own abilities, can cope with the normal stresses of life, can work productively 

and fruitfully, and is able to make a contribution to his or her community” (2004, p. 12). If the 

larger aim of psychological services is to help youth thrive, rather than simply live without 

problems, school psychologists should consider incorporating aspects of positive functioning 

into their assessment and intervention efforts, including universal mental health screening 

(Furlong, Gilman, & Huebner, 2014; Renshaw et al., 2014). 

 The importance of positive features of mental health has been explored in multiple lines 

of research that have used various operational conceptions of wellbeing (WB). For example, 

Keyes (2006; 2007; Keyes & Annas, 2009) views wellbeing as consisting of two related but 

distinct components: hedonic wellbeing (HWB) and eudaimonic wellbeing (EWB). HWB is the 

frequency and duration of an individual’s positive emotional experiences and their overall 

satisfaction with life; also referred to as “feeling good.” On the other hand, EWB is an 

individual’s appraisal of how well they are functioning socially and psychologically; also known 

as “functioning well.” In a study involving 1,234 adolescents, 12–18 years old, Keyes (2006) 

noted that youth who scored at a high level on at least one indicator of HWB and a high level on 

over half of the EWB indicators (i.e., mentally healthy or “flourishing”) showed fewer symptoms 
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of depression as compared to those who scored at a low level on at least one symptom of HWB 

and low levels on more than half of the EWB indicators (i.e., “languishing”). Youth associated 

with a subjective wellbeing (SWB) profile between “flourishing” and “languishing” were 

considered “moderately mentally healthy” and showed middling rates of depression symptoms. 

Empirical evidence concerning the interaction between aspects of psychopathology 

(PTH; used broadly here in reference to any negative psychological or behavioral functioning) 

and WB among youth has suggested that mental health could be conceptualized as a 

bidimensional rather than unidimensional concept. This dual-factor model of mental health—

also referred to as two-continua or complete mental health—suggests that PTH and WB are 

related but distinct constructs that vary in severity along two dimensions. Greenspoon and 

Saklofske’s (2001) conducted an early exploratory study of dual-factor mental health with a 

sample of elementary school students. To evaluate dimensions of PTH and SWB among the 

students, the researchers used several student- and teacher-report subscales that measured aspects 

of self-concept, interpersonal relationships, personality, temperament, internalizing and 

externalizing problem behaviors, perceived locus of control, and life satisfaction. Results showed 

that four distinct mental health categories could reliably be discriminated from each other at rates 

of 95–300% above chance levels. These categories included: “distressed” ––high PTH, low 

SWB; “externally maladjusted” ––high PTH and SWB; “dissatisfied” ––low PTH and SWB; and 

“well adjusted” ––low PTH, high SWB. Given that both groups display high levels of PTH, 

students who would be classified in either the “distressed” or “externally maladjusted” categories 

are the most likely to be detected in a traditional teacher referral paradigm. However, the authors 

recognized that there might be important differences in outcomes between the two groups 

accounted for by the discrepancy in SWB. Further, although students in the “dissatisfied” 
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category do not display significant symptoms of PTH, they still are lacking in SWB. This group 

may therefore benefit from an intervention approach aimed at bolstering positive behaviors, 

rather than problem elimination. 

 Subsequent research on the dual-factor model of mental health offered support for the 

hypothesized between-group differences proposed by Greenspoon and Saklofske (2001). For 

instance, Suldo and Shaffer (2008) used a similar four-group classification system of PTH and 

SWB with a sample of middle school students to see how well group membership predicted 

important outcomes in school functioning, social adjustment, and physical health. As predicted, 

results indicated that students in the “complete mental health” group (i.e., low PTH, high SWB) 

showed the lowest negative outcome scores (e.g., social problem frequency; school absences) 

and the highest positive outcome scores (e.g., GPA; motivation and self-regulation). Further, 

students with elevated levels of PTH showed significantly worse academic performance 

regardless of SWB level (e.g., GPA for the two high PTH groups was approximately 0.35–0.50 

points lower than the “complete mental health” group). These findings were consistent with the 

traditional view of unidimensional mental health. However, results also showed that students 

classified as “symptomatic but content” (i.e., high PTH and SWB) endorsed receiving positive 

support from adults in their lives approximately 17% more frequently than students in the 

“troubled” group (i.e., high PTH, low SWB), who themselves endorsed experiencing social 

difficulties at twice the rate of the “symptomatic but content” group. These findings suggest that 

the presence of higher levels of SWB may function as a buffer from the negative effects of PTH 

symptoms. 

 A follow-up study by Suldo, Thalji, and Ferron (2011) investigated the longitudinal 

predictive value of combined measurement of aspects of student SWB and PTH after one year. 
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Results again confirmed classic conceptions of mental health. For instance, those with elevated 

externalizing symptoms at Time 1 were significantly more likely to earn lower GPAs 

(accounting for 6% of the variance) and have worse school behavior at Time 2 (accounting for 

5% of the variance). Furthermore, students with elevated internalizing PTH symptoms, 

regardless of SWB level, missed on average one more day of school than the low PTH groups. 

However, support for the dual-factor model was also found, with relative SWB level accounting 

for a small (1% unique variance) but significant portion of the variance in Time 2 GPA. Findings 

also showed that the “complete mental health” group faired best overall and showed the least 

deterioration in GPA from Time 1 to Time 2. 

 Generally, Suldo and Shaffer (2008) noted several robust group distinctions in terms of 

outcomes that failed to replicate to the same degree when investigated a year later (Suldo et al., 

2011). These findings indicate support for the possibility that more contact with positive aspects 

of functioning (e.g., social support, frequent positive emotions) may help attenuate the effects of 

PTH. Moreover, Suldo and colleagues suggest that including measures of youths’ wellbeing 

within universal screening protocols may show incremental validity in identifying and 

prioritizing youth with lower or higher levels of mental health risk. Yet, given these somewhat 

discrepant findings, additional study is important to help clarify the nature of dual-factor mental 

health among youth, especially as it might apply for the purposes of mental health screening in 

schools. 

The Current Study 

 Given the importance of universal mental health screening in schools and considering the 

evidence that a dual-factor mental health assessment framework may offer incremental validity 

for predicting student outcomes over and above traditional PTH assessment alone (e.g., 
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Greenspoon & Saklofske, 2001; Suldo & Shaffer, 2008; Suldo et al., 2011), pursuing further 

research in this area may prove fruitful. Although, progress is somewhat hindered by a relative 

lack of appropriate and technically adequate WB screening instruments. Additionally, those that 

are currently available are understudied, leaving much work still to be done in understanding the 

role WB assessment can play in mental health screening. 

 Two screeners that have received some research attention include the elementary student 

self-report Positive Experiences at School Scale (PEASS; Furlong, You, Renshaw, O’Malley, & 

Rebelez, 2013) and the adolescent self-report Student Subjective Wellbeing Questionnaire 

(SSWQ; Renshaw, Long, & Cook, 2014). The developers of these instruments aimed to create 

assessment tools that were brief, measured multiple dimensions of WB, used domain-specific 

item wording, and were comprised of items unique to the school setting. These instruments were 

developed in part to address the lack of school-specific, empirically-backed youth wellbeing 

screeners that could tie directly in with MTSS models in school systems (Renshaw et al., 2014). 

 Though the PEASS (Furlong et al., 2013) and SSWQ (Renshaw et al., 2014; Renshaw, 

2015) seem appropriate and have demonstrated technical adequacy as brief self-report measures 

that might be used for screening purposes, what has yet to be developed is an appropriate and 

technically adequate teacher-report instrument for screening student WB.  The availability of 

teacher-report instruments may be desirable over self-report in situations where a self-report 

methodology would be a barrier to gathering useful screening data. For instance, teacher-report 

allows assessment of students in the educational context who may be too young and lack the self-

awareness to complete self-reports with fidelity. Teacher-report also involves a more feasible 

data-collection procedure for elementary school settings, as it takes less time away from student 

learning and offers a common perspective for all student behavior within a class.  
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 Past research has suggested that the correspondence between youth self-reports and 

teacher-reports of student mental health phenomena show a moderate association with each other 

(e.g., Earhart Jr. et al., 2009). While this does leave a substantial amount of variance in student 

experience left unaccounted for, teacher-reports may nonetheless be a sufficient data collection 

approach to identify risk as a first gate in universal mental health screening (Miller et al., 2015). 

Motivated by this lack of an empirically-validated school-specific teacher-report screener for 

student WB, the present study involved the initial development and validation efforts for such an 

instrument: the Student Wellbeing Teacher-Report Scales (SWTRS). 

 While development of a teacher-report version of the PEASS or SSWQ may seem like a 

logical route to crafting a teacher-report screener of student WB, the PEASS and SSWQ were 

specifically intended for older students and have a differential theoretical structure than what was 

used in the present study to develop the SWTRS. The theoretical conceptualization of student 

WB underlying the SWTRS drew from the “feeling good” and “functioning well” model of 

wellbeing, which was described above, as it has received empirical support in studies with older 

youth (Keyes, 2006) and broadly aligns with standard views of mental health from a 

psychodiagnostic perspective. For instance, in order to meet criteria for major depressive 

disorder in The Diagnostic and Statistical Manual of Mental Disorders (5th ed.; American 

Psychiatric Association, 2013), an individual must show relatively persistent depressed mood 

and impairment in their typical level of adaptive daily functioning. Indeed, these symptom 

categories offer an example of how “feeling bad” and “functioning poorly” are key features of 

mental health problems, suggesting that “feeling good” and “functioning well” in life are key 

features of positive mental health. It is proposed that these features are thus foundational for 

understanding complete or optimal mental health from the dual-factor perspective. 
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 Given the empirical and theoretical context sketched above, the following hypotheses 

were posited for the current study: 

1. The latent factor structure of the newly generated item pool for the SWTRS would be 

composed of a positive internal experiences WB factor— “feeling good”—and a 

positive external experiences WB factor— “functioning well.” 

2. The WB factors derived from the SWTRS items will have adequate structural 

psychometric qualities for use as screening scales (e.g., robust factor loadings, 

acceptable internal-consistency). 

3. The WB scales derived from the SWTRS factors will show small to moderate 

correlations with PTH measures. 

4. The WB scales will predict important concurrent school outcomes (i.e., academic 

performance, days absent from class, and time on-task during class) 

5. Using the WB scales in conjunction with PTH scales will show incremental validity 

evidence for predicting concurrent school outcomes (i.e., attendance, academic 

achievement, and time on-task) over and above using the PTH scales alone. 
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Method 

Participants  

 The current study involved a sample of elementary school teachers’ (N = 12) ratings of 

their students’ (N = 184) behaviors at school. Teacher participants were recruited from a local 

urban charter elementary school and completed an informed consent procedure that was 

approved the by university’s Institutional Review Board. Each grade-level at the school (K–5) 

had two teachers, all of whom participated in the study (Age: Median = 28 years, Range = 23–

65; Years of teaching: Median = 4, Range = 1–25). Teachers were predominantly female 

(83.3%). In terms of highest degree earned, the sample was split evenly between bachelors and 

graduate degree holders. Half of the teachers identified their race/ethnicity as White/Caucasian 

(n = 6), with smaller proportions identifying as Black/African American (n = 3) or Multiracial (n 

= 1). Two teachers did not include their race/ethnicity. Student demographics as reported by 

teachers indicated the sample had a median age of 8 years old (Range = 5–13), were 

predominantly female (56%), and majority Black/African American (n = 181). Race/ethnicities 

of the remaining three students were identified by their teachers respectively as American 

Indian/Alaska Native, Native Hawaiian/Other Pacific Islander, and Multiracial. The median 

number of student behavior surveys submitted per teacher was 16.5 but showed wide variability 

across classes (Range = 7–21). This suggests that not all teachers completed surveys for all 

students in their classroom as the obtained sample contained 83.6% of the total school 

enrollment (i.e., 220 students; see “Data collection” for additional information). 

Measures 

Student Wellbeing Teacher-Report Scales (SWTRS). To assess positive aspects of 

student mental health, a new item pool of school-specific WB behaviors was drafted, refined, 
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and used for predictive analysis of concurrent school outcomes. See “Item pool creation process” 

in the “Procedures” section below for details on the scale development method for the SWTRS. 

Teacher respondents were asked to indicate how frequently each student displayed the school-

specific WB behaviors over the previous two months. These items were followed by response 

options arranged along a four-point relative-frequency based scale, ranging from 0 = Almost 

Never to 3 = Almost Always. The original SWTRS item pool contained 54 distinct items and 

ultimately was reduced to two subscales containing six items each. 

Student Internalizing and Externalizing Behavior Scales (SIBS and SEBS). The 

SIBS and SEBS are a complementary pair of teacher-report screeners intended for assessing 

negative aspects of student mental health. These scales are composed of seven items each, 

pertaining to the observable behavioral manifestations of student internalizing problems (e.g., 

“clings to adults”, “withdrawn”) and externalizing problems (e.g., “gets angry easily”, “disrupts 

class activities”). Teachers were asked to rate how often the behaviors of interest occurred for 

each of their students over the previous two months. Item response options were arranged along 

a four-point relative-frequency based scale, ranging from 0 = Never to 3 = Frequently/Almost 

Always. Previous research with the SIBS and SEBS suggested that elementary school teachers 

could complete all 14 items for every student in a class of 25 in approximately 15–20 minutes 

(Cook, 2013). Such short completion times minimize the burden on the teachers and add 

markedly to administration feasibly (Glover & Albers, 2007). Scores derived from the SIBS and 

SEBS scales have strongly correlated with corresponding omnibus measures of internalizing and 

externalizing behaviors, moderately correlated with omnibus measures of the other construct 

(i.e., externalizing with internalizing), and shown adequate internal scale reliability (Cook et al., 

2011; Cook, 2013). Optimal cut points were derived from receiver operating characteristic 
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(ROC) curve analyses and suggested that scores at or above 8 on the SIBS and at or above 9 on 

the SEBS marked the threshold for clinical risk (Cook, 2013). Internal consistency estimates 

from the present sample were above .70 for both the SIBS ( = .78) and SEBS ( = .91) scales. 

Descriptive summaries for SIBS and SEBS total scores are displayed in Table 1. 

 Table 1. Scale Descriptive Statistics for the SIBS, SEBS, AES, and SPS 

Note. Q1, Q3 = first and third quartile; r = average inter-item correlation; Skew. = Skewness; 

Kurt. = Kurtosis 

 

 Concurrent school outcomes. Multiple domains of student behavior and school 

functioning were measured as concurrent outcome variables in this study. These outcomes 

included academic achievement in (a) English language arts (ELA) and (b) math, (c) school 

attendance, and (d) time on-task in the classroom. These variables were selected based on their 

substantive worth in evaluating student success, as they are key indicators valued by teachers and 

administrators. Due to feasibility concerns related to linking anonymized student outcome data 

from school records to their teacher-rated behavior scores, the teachers provided estimates for all 

concurrent student outcomes. ELA and math achievement were estimated with single items that 

read, “In the past two months, how well has the student performed in English Language 

Arts/Math?”, followed by a five-point response scale ranging from 1 = Far below grade level to 

5 = Far above grade level. Attendance was measured with a single open-response item that read, 

“In the past two months, about how many full days of school has the student missed?” Time on-

task was measured with an item that read, “In the past two months, about what percent of time 

was the student on-task during class?”, followed by a ten-point response option scale ranging 

Scale Items 

Min, 

Max Median Mean SD 

Q1, 

Q3  r Skew. Kurt. 

SIBS 7 0, 17 7 7.10 4.19 4, 10 .78 .34 0.26 -0.67 

SEBS 7 0, 21 9 8.76 5.98 3, 14 .91 .61 0.11 -1.21 

AES 6 0, 18 11 10.74 5.08 6, 15 .93 .69 -0.07 -1.12 

SPS 6 1, 18 12 11.98 4.74 8, 17 .91 .66 -0.28 -1.04 
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from 1 = 0–10% to 10 = 91–100%. Descriptive statistics for each concurrent outcome domain 

are displayed in Table 2. 

Table 2. Descriptive Statistics for Concurrent Outcome Variables Time On-Task, Absences, and 

Math and ELA Achievement 

 

 

 

 

 

 

Note. Q1, Q3 = first and third quartile; Skew. = Skewness; Kurt. = Kurtosis 

 

Procedure 

Item pool creation process. Creation of the WB item pool followed procedures similar 

to those Renshaw, Long, and Cook (2014) used in developing the SSWQ and was further 

informed by considerations from standard texts on scale development (e.g., DeVellis, 2012; 

Clark & Watson, 1995) and potential treatment utility of assessment procedures (e.g., Hayes, 

Nelson, & Jarrett, 1987). Items were generated to reflect the hypothesized student WB 

dimensions “feeling good” and “functioning well” as they are represented in the literature and 

specifically tailored to the school environment. As an additional consideration, drafted WB items 

had to measure behaviors that were incompatible with those found on the SIBS and SEBS to 

further distinguish the PTH and WB variables. For example, the item “fights or argues with 

peers” on the SEBS had a complementary WB item “gets along well with classmates” that was 

both indicative of “functioning well” and impossible to perform simultaneously with fighting and 

arguing. Given that the items are intended for teacher-report, rather than student self-report, item 

wording targeted behaviors that could be directly observed by a teacher informant, similar to the 

items from the SIBS and SEBS. Two to four incompatible WB behavior items were drafted per 

each of the 14 total SIBS and SEBS items, resulting in the initial 54-item pool. 

Variable Min, Max Median Mean SD Q1, Q3 Skew. Kurt. 

Time On-Task 1, 10 8 7.50 2.39 6, 9 -0.91 2.92 

Absences 0, 15 2 2.62 2.25 1, 3 1.90 8.54 

Math Achievement 1, 5 3 2.69 0.99 2, 3 0.19 2.80 

ELA Achievement 1, 5 3 2.62 1.02 2, 3 0.25 2.84 
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After item drafting, five content experts in youth wellbeing and/or school MH screening, 

who were all tenured professors in school psychology training programs within research-

intensive universities, agreed to review the initial SWTRS item pool and rate each item in terms 

of (a) the construct they believed the item was most closely associated with—“feeling good,” 

“functioning well,” “both,” or “neither”; (b) how sure they were of this categorization—“not 

very sure,” “pretty sure,” or “very sure”; and (c) how relevant they believed the item was to the 

construct they suggested it is associated with—“low relevance,” “mostly relevant,” or “highly 

relevant.” The experts were given the following operational definitions to consider—“Feeling 

Good: Teacher’s perception that a student experiences positive emotions or affective states” and 

“Functioning Well: Teacher’s perception that student behavior is consistent with academic and 

social success at school.” Experts were also given the option to include narrative comments 

about the items if appropriate. Considering this expert feedback, the item pool was then edited 

into a reduced and revised form. Items were removed from the pool if at least three of the five 

experts were “pretty sure” or “very sure” that (a) the item related to “both” or “neither” construct 

or (b) the item had “low relevance” to the construct they selected. The revised item pool 

ultimately contained 36 items. 

Data collection. Teachers were asked to complete informant-report forms concerning 

student wellbeing behaviors (i.e., SWTRS item pool), problem behaviors (i.e., SIBS, SEBS), and 

the concurrent school outcomes (see “Measures”) for each student in their class. Data was 

collected electronically using a secure online survey. Teachers were randomly assigned a letter 

A–L to use as both their personal anonymized identifier for their demographic information as 

well as the identifier for each student in their class so that student data could be appropriately 

clustered by teacher. Class rosters were prepared by school office staff and distributed to 
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teachers prior to the beginning of data collection to aid respondents in working systematically 

through each of their students, lessening the likelihood of a student being inadvertently excluded. 

No identifying student information was solicited or reported in the online survey. 

Data were gathered primarily (n = 144) at a single time point at the elementary school 

during a one hour block normally scheduled for professional development with the author 

present throughout to explain the procedure and address questions if they arose. Teachers 

completed electronic versions of the survey using a secure online server. As an incentive for 

participation, all 12 teachers were entered in to a raffle at the end of the data collection period to 

win one of five gift cards. Some teachers did not have time to complete the survey for all of their 

students in the hour allotted. As a result, these teachers were allowed to complete the electronic 

surveys on their own during the remainder of the week. Thirty-four additional surveys were 

completed by midnight the following day and six more by the end of the week, completing the 

final data set used in the analyses. 

Preliminary Analyses 

All statistical analyses were conducted with IBM SPSS Statistics 23 and R statistical 

environment (R Core Team, 2016). As a first step, several data manipulations were performed to 

“tidy” the dataset prior to primary analysis in accordance with recommendations from Wickham 

(2014). Subsequently, preliminary analyses were conducted to explore the descriptive qualities 

of the data set. These preliminary analyses included inspecting visual and statistical summaries 

of all variables to detect aberrant data points or missing values and manually correcting any 

obvious data entry errors. Apart from two nonresponses to teacher race/ethnicity, no other data 

were missing. Further, no data points showed significant influence on the modeled data using the 

Mahalanobis distances procedure. During data collection, one fifth-grade teacher entered 
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incorrect anonymized identification codes for some of their students, making it unclear which 

student data were reported by which of the two fifth-grade teachers. A recoding procedure was 

used to identify students in the dataset who were (a) at least 11 years old and (b) did not have a 

code associated with the other fifth-grade teacher, who correctly entered all data. These 

identified cases were then reassigned their correct teacher code. 

Primary Analyses 

SWTRS latent structure. The first stage of the primary analyses involved an 

exploratory factor analysis (EFA) of the 36 SWTRS items refined from the expert review. The 

described procedure was based on methods used in similar scale development research (e.g., 

Furlong, You, Renshaw, O’Malley, & Rebelez, 2013). The purpose of the EFA was twofold: (a) 

to understand the latent factor structure of the SWTRS item pool and (b) to identify items for 

removal from the pool given that they not adhere to a latent factor in a statistically or 

theoretically meaningful way. Factors from the data were revealed through a factor extraction 

method. Because the item pool was significantly non-normal, the most appropriate extraction 

method was principal axis factoring (Field, 2013). A factor rotation procedure was employed to 

help the interpretability of the factor structure (Bryant & Yarnold, 1995). Given that latent 

variables in psychological research are usually correlated, an oblique factor rotation approach, 

direct oblimin, was most appropriate to account for this relation (Field, 2013). 

Before inspecting the factor structure output, the number of preliminary indices were 

checked to ensure factor loading estimates were sufficiently stable and therefore interpretable. 

Field (2013) outlined the most important metrics and criteria to check, which include (a) 

ensuring that the matrix determinant is > 0, (b) the overall Kaiser-Meyer-Olkin (KMO) sampling 

adequacy statistic is > .50, (c) diagonal elements of the anti-image matrix are all > .50, (d) off-
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diagonal estimates of the anti-image matrix are small, (e) Bartlett’s Test of Sphericity is 

significant at p < .05, and (f) all communalities are > .50. Any item with a communality < .50 

was a candidate for removal from the item pool. If all of the above criteria were met, 

interpretation of factors and item factor loadings was permissible. 

EFA output includes several estimates of eigenvalues that each represent a potentially 

unique factor underlying the analyzed items. These eigenvalues must be interpreted in several 

ways to help determine the appropriate number of meaningful factors present in the data. One of 

the interpretive methods is a parallel analysis (Bryant & Yarnold, 1995; Whitley & Kite, 2012). 

The parallel analysis involves a Monte Carlo procedure that estimates the maximum eigenvalue 

that is likely to be obtained by chance alone for a given sample size. The number of eigenvalues 

larger than this estimate represent the number of potentially substantive latent factors in the 

model. Amount of variance extracted will be noted by summing the estimates of all eigenvalues 

above the result of the parallel analysis to get an indication of the amount of variance 

meaningfully accounted for by the EFA. A visual analysis of the scree plot—a plot of each of the 

extracted eigenvalues ordered from highest to lowest—is another recommended approach to help 

determine the number of factors (Field, 2013; Whitley & Kite, 2012). The scree plot should be 

interpreted by finding the point where the slope of the plotted eigenvalues changes significantly, 

and retain the number of eigenvalues above this break line as potential factors. 

After determining the number of statistically appropriate factors from inspection of the 

eigenvalues, interpretation of item factor loadings in the pattern matrix output was next. An item 

was considered for removal from the item pool if (a) the factor loading was < .30, (b) it loaded 

on two or more factors > .30, or (c) it did not load onto any factor in a theoretically meaningful 

way (Field, 2013). Additional EFA were conducted following removal of weak functioning items 
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until all above conditions were satisfied. Because the items were specifically drafted to represent 

two hypothesized wellbeing constructs (i.e., “feeling good” and “functioning well”), it was 

assumed that the EFA would indicate the presence of two distinct factors from which a shortened 

screener-length measure could be derived (see Greco, Lambert, and Baer’s [2008] use of a 

similar item reduction procedure in their development of the 8-item short-form of the Avoidance 

and Fusion Questionnaire for Youth). 

SWTRS scale descriptive statistics. Several descriptive indices of scores derived from 

the SWTRS were evaluated. These included a count of the number of items that were ultimately 

retained for the new screeners, minimum and maximum scale scores, scale median, mean, and 

standard deviation, interquartile range, skewness and kurtosis, average inter-item correlations, 

and internal consistency estimates. Skewness and kurtosis estimates ≤ |3.0| were considered 

adequately normal based on the criteria specified by D’Agostino, Belanger, and D’Agostino Jr. 

(1990). Average inter-item correlation r > .30 (Field, 2013) was considered sufficiently large and 

internal consistency estimates (Cronbach’s alpha) > .70 was the threshold for adequate 

reliability. 

SWTRS construct validity. To investigate the construct validity of the scales derived 

from the SWTRS, a series of bivariate correlations were conducted between all the predictor 

variables (i.e., scores on the SIBS, SEBS, and SWTRS scales) and the concurrent school-related 

outcomes. Pearson’s r was calculated to assess the correlations between each variable. Small to 

moderate negative correlations between the SWTRS scores and the SIBS and SEBS scores were 

predicted given that the dual-factor theory suggests PTH and WB are distinct yet related 

constructs (e.g., Suldo & Shaffer, 2008). Similarly, positive correlations were predicted for the 

relations among SWTRS scores and positive school outcomes (i.e., math and ELA achievement, 
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time on-task) and a negative relation with number of absences. Discrimination of the SWTRS 

scores from the SIBS and SEBS was also tested by entering all PTH and WB scale scores into an 

additional EFA with the prediction that four related but structurally unique factors would 

emerge. 

SWTRS concurrent and incremental validity. Due to the hierarchical arrangement of 

the collected data, where student behavior ratings were nested within teacher respondents, 

multilevel modeling (MLM) procedures were utilized for all concurrent prediction analyses. 

Analyzing these data with MLM offered several advantages over traditional multiple regression 

approaches. Such advantages included the ability to calculate student-level variance separately 

from the variance at the class-level and for problematic patterns in the dataset (e.g., unequal 

sample sizes within classes, non-independence of observation) to be explicitly modeled allowing 

for greater estimate accuracy (Raudenbush & Bryk, 2002; Finch, Bolin, & Kelley, 2014; Huta, 

2014). 

The MLM approach was informed by recommendations from Hox (2010), who suggested 

a method in which model terms are progressively added, tested for significant model fit 

contribution, and subsequently retained or removed based on the result of chi-squared deviance 

tests. This procedure involved six modeling stages for each concurrent student outcome of 

interest (i.e., percent of time on-task, absences, math and reading achievement). All MLM 

analyses were conducted in R with the nlme package (Pinheiro, Bates, DebRoy, Sarkar, & R 

Core Team, 2016). 

The first stage tested the random intercept model, or null model, which included only the 

outcome variable without predictors while allowing the model intercepts to vary randomly across 

the contextual or cluster variable. Teacher raters, or classrooms, were considered the cluster 
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variable for this study. This model produced an estimate of how much variability there is 

between average scores on the outcome variable across teachers in the population as indicated by 

the magnitude of the intraclass correlation (ICC). 

Stage two tested the level-1 fixed effects models where student-level predictors were 

added in successive blocks. Block 1 included the fixed PTH predictors, SIBS and SEBS. Block 2 

then added the new fixed WB scale predictors to test incremental validity of the dual-factor 

model. Consistent with the recommendation of Enders and Tofighi (2007), all level-1 predictor 

variables were centered within clusters to enhance interpretability of slope variance estimates 

and relations between level-1 predictors and the outcome variable. Level-2 fixed effects models 

followed in the next stage and involved building cluster means for the outcome variable back in 

to the models to restore between group variance lost by the centering procedure. 

Once all desired fixed effect predictors were included, stage four tested the improvement 

in model fit when allowing the model slopes between each predictor variable and the outcome to 

vary randomly. Each predictor slope was tested individually. Once slope variability was tested 

for each predictor, all model slopes that contributed significantly to model fit were retained in the 

full random model. In stage five, after identifying the preferred random model, the contribution 

to model fit for each predictor variable was evaluated individually. In the interest of creating 

theoretically parsimonious models, only the predictors with significant unique contribution in 

explaining the outcome were retained for the final reduced model. Finally, stage six involved 

modeling the contribution of the SWTRS predictors alone to test for concurrent validity 

evidence. 

There is no agreed upon single indicator used to determine the strength of fit for 

multilevel models. The commonly suggested approach involves interpretation of a variety of fit 



www.manaraa.com

 

25 
 

indices to inspect relative changes in overall fit at each modeling stage and identify the best 

fitting explanatory model (Hox, 2010; Finch et al., 2014). A maximum likelihood estimation 

approach was selected for the MLM analyses. This method allowed for changes in the log 

likelihood fit statistic to be examined with a chi-square deviance test to detect if the magnitude of 

change from a simpler model to a more complex model was statistically significant. AIC and 

BIC fit indices were also inspected in this study. These are similar to the log likelihood statistic 

in that smaller values indicate better fit relative to other models. Conversely, these statistics are 

distinguished from the log likelihood estimates in that they inflate the estimate when model 

terms are included that do not make sufficiently large contributions to model fit. Of these two 

indices, BIC corrects the estimate more harshly than AIC. 

Additionally, changes in the ICC and level-1 and level-2 pseudo R2 were compared across 

models. It should be noted that the pseudo R2 statistics used here are not the same as the more 

traditional R2 estimates found in multiple regression. The R2 values calculated for this study more 

accurately reflect the estimated proportion of variance in the outcome variable accounted for by a 

given model at level-1 and level-2, respectively. Importantly, these values should only be 

considered approximations of explained variance, as random slopes included in the model may 

bias the estimates to a small degree (Snijders & Bosker, 1999). Nonetheless, these statistics can 

be useful for identifying patterns across models. 

The formulas used to calculate R2 values follow the recommendations of Snijders and 

Bosker (1999). Calculation of level-1 R2 values used the following formula: 

𝑅1
2 =

𝜎1
2 +  𝜏1

2

𝜎0
2 +  𝜏0

2 

Where 𝜎0
2 and 𝜎1

2 are the level-1 error residuals for the random intercept model and the 

comparison model, respectively. The terms 𝜏0
2 and 𝜏1

2 indicate the intercept variance estimates 
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for the random intercept model and the comparison model, respectively. Calculation of level-2 

R2 values followed a similar formula: 

𝑅2
2 =

𝜎1
2/𝐵 +  𝜏1

2

𝜎0
2/𝐵 +  𝜏0

2 

Where the model terms are the same as in the level-1 formula with the addition of B, which 

represents the average number of units per level-2 cluster. In this case, B was the average number 

of students per teacher-rater.  
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Results 

SWTRS Latent Structure 

  Considering the expert feedback concerning the initial WB item pool, 18 of the 54 items 

were removed due to broad disagreement or poor ratings across reviewers. Testing of the 

normality assumption of all remaining items revealed significant multivariate non-normality. 

Investigation of the factor structure of the remaining 36 items proceeded with a series of 

principal axis factoring EFA with a direct oblimin rotation. Results of the first analysis showed 

strong Kaiser-Meyer-Olkin (KMO) sampling adequacy (.96) and no consequential 

multicollinearity (matrix determinant > 0), but some extracted item communalities were below 

the .50 minimum (h2 range = .33–.80). Inspection of the factor eigenvalues and visual scree plot 

analysis suggested that a two-factor solution was the best fit for these items and collectively 

accounted for 64.23% of the total variance. Inspection of item content in relation to factor 

loadings suggested that the two-factor solution did not appear to align with the hypothesized 

“feeling good” and “functioning well” constructs but rather better represented two more context-

specific constructs: a prosocial behavior factor (Student Prosociality Scale or SPS; 24 items, λ 

range = .47–.98) and an academic engagement factor (Academic Engagement Scale or AES; 12 

items, λ range = .63–.92). Internal consistency estimates for both scales were very high (SPS α = 

.97; AES α = .96), suggesting possible redundancy among the items. Four items had cross-

loadings above the .30 threshold. 

 Several additional EFA followed to clarify these results and test if removal of weaker 

functioning and conceptually redundant items would lead to substantive changes in the 

underlying factor structure. The next EFA investigated the structure of the strongest nine items 

from each of the two factors (18 items total) that seemed to align conceptually with the 
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hypothesized “feeling good” and “functioning well” (FG/FW) factors. Results indicated that 

despite these additional efforts to achieve a tenable FG/FW model, the items still fit more closely 

with a two-factor SPS and AES structure. This was also true for the subsequent 16-item EFA that 

excluded the two weakest items from the 18-item model. The consistency with which the SPS 

and AES factors appeared in each EFA suggested that the hypothesized FG/FW model was an 

inappropriate latent structure for these data. 

Because student prosociality and academic engagement are nonetheless important 

indicators of WB at school, subsequent analyses used this alternative model to develop workable 

scales for teacher-report containing as few items as possible. The final EFA revealed a two-

factor solution composed of the 12 strongest items from the 16-item model—six each from SPS 

and AES—and showed uniformly robust model fit indices—KMO = .93, Determinant > 0, h2 

range = .60–.73; SPS λ range = .67–.91, AES λ range = .74–.87; Cumulative variance explained 

= 74.10%; Factor correlation ϕ = .60, large effect. Additional EFA models containing fewer than 

12 items were attempted but all yielded a single factor solution and substantially weaker 

structural fit, resulting in their rejection. Considering the series of EFA results together, the 12-

item SPS and AES model (see Table 3) was ultimately retained as the preferred measurement 

model for the SWTRS, as it achieved the best balance of conceptual coherence, empirical 

strength, and brevity.  

SWTRS Scales Descriptive Statistics 

Descriptive statistics for the finalized SWTRS scales, AES and SPS, are found in Table 

1. 
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Table 3. EFA Pattern Matrix Results for The Two-Factor SWTRS Measurement Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SWTRS Construct Validity 

 Results from the first test of construct validity, correlating the SIBS and SEBS total 

scores with SPS and AES total scores, showed associations in the moderate range between the 

SIBS and each of the SWTRS scales (SPS r = -.46, p < .01; AES r = -.47, p < .01). Correlations 

in the large (AES r = -.55, p < .01) and very large (SPS r = -.90, p < .01) ranges were found 

between the SEBS and the SWTRS scales. Next, an additional EFA was conducted including all 

SIBS, SEBS, SPS, and AES items together. Results revealed a three-factor model (KMO = .93, 

Determinant > 0, h2 range = .10–.76; Cumulative variance explained = 59.08%) comprised of 

 Factor Loadings (λ) 

Item AES (ξ1) SPS (ξ2) 

Comfortable working independently. 0.874 -0.043 

Participates meaningfully in class. 0.857 0.022 

Inquisitive/interested in learning new things. 0.841 -0.046 

Confident with new challenging material. 0.833 -0.033 

Engaged in learning. 0.776 0.131 

Shows excitement for class activities. 0.735 0.056 

Friendly with classmates. -0.068 0.926 

Approachable/easy to get along with. 0.017 0.853 

Self-control when frustrated. 0.037 0.818 

Peaceful during class. -0.007 0.804 

Classmates respectful to them. -0.036 0.758 

Obeys class rules. 0.164 0.658 

Eigenvalues 6.898 1.876 

% variance 57.59 15.63 
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Factor 1 (ξ1): all seven SEBS items, all six SPS items, and the “bullied by peers” SIBS item (|λ| 

range = .46–.86); Factor 2 (ξ2): all six AES items (λ range = .72–.83); and Factor 3 (ξ3): five 

SIBS items (λ range = .40–.76). The pattern matrix contained no significant cross-loadings but 

the SIBS item “clings to adult” was the only item with factor loadings < .30 on all three factors. 

Factor correlations were in the moderate (ξ1 and ξ3 ϕ = -.35; ξ2 and ξ3 ϕ = -.31) and large (ξ1 and 

ξ2 ϕ = .54) ranges. 

Correlations among all PTH and WB scale total scores and measured concurrent outcome 

variables are found in Table 4. Both SWTRS scores showed positive correlations with time on-

task and academic achievement as well as negative correlations with the number of absences as 

predicted; although, the SPS and absences correlation was the only non-significant relation. The 

SIBS and SEBS scores showed the opposite directionality of association with all outcome 

variables while SEBS and absences showed the only non-significant relation. The magnitude of 

correlation between the AES and the school-outcomes was small for absences but large for the 

other three variable. The AES showed the strongest associations with all outcome variables over 

SIBS, SEBS, or SPS. Apart from the very strong negative correlation between the SEBS and 

SPS, all PTH and WB correlation magnitudes were on the upper end of moderate to the low end 

of large. These results are largely consistent with the hypotheses and help demonstrate the 

validity of the dual-factor model as both PTH and WB behaviors showed meaningful 

associations with valued school outcomes and mid-range correlations with each other. 

SWTRS Concurrent and Incremental Validity  

 Time On-Task. Residual errors from the multilevel models predicting percent of time 

on-task were visually inspected and showed adequately normal distribution and homoscedastic 

variance. Table 5 shows model fit indices for increasingly complex multilevel models. Table 6
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Table 4. Correlation Matrix of All Predictor and Outcome Variables 

Variable 1.  2. 3. 4. 5. 6. 7. 

 

8. 

1. Time On-Task 1        

2. ELA Performance .486** 1       

3. Math Performance .441** .731** 1      

4. Absences -.280** -.240** -.226** 1     

5. SIBS -.375** -.267** -.184* .202** 1    

6. SEBS -.525** -.261** -.161* .120 .530** 1   

7. SPS .542** .247** .161* -.078 -.461** -.897** 1  

8. AES .677** .520** .533** -.216** -.472** -.547** .589** 1 

Note. Pearson correlation coefficient effect size interpretation: r > .10 = small, r > .30 = medium, r > .50 = large; *p < .05, **p < .01
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Table 5. Fit Comparisons for Multilevel Models Predicting Percent of Time On-Task 

Model Description 

Model 

Number 

Model 

Comparison df AIC BIC LL LL Ratio p 

Fixed Intercept 1 -- 2 845.57 852.00 -420.79 -- -- 

Random Intercept 2 

 

1 v. 2 3 836.48 846.12 -415.24 11.09 < .001 

 

Level-1 Predictors: PTH 3 

 

2 v. 3 5 783.97 800.05 -386.99 56.50 < .001 

 

Level-1 Predictors: PTH + WB 4 

 

3 v. 4 7 710.49 733.00 -348.85 77.48 < .001 

Level-2 Predictors: Group means 5 

 

4 v. 5 11 708.81 744.18 -343.41 9.69 .046 

Random slope: SIBS 6 5 v. 6 13 711.18 752.98 -342.59 1.63 .443 

 

Random slope: SEBS 7 5 v. 7 13 705.95 747.75 -339.98 6.86 .032 

Random slope: AES 8 5 v. 8 13 700.23 742.02 -337.11 12.58 .002 

Random slope: SPS 9 5 v. 9 13 703.73 745.53 -338.87 9.08 .011 

Full Random Model 10 5 v. 10 20 712.66 776.96 -336.33 14.16 .117 

Adjusted Full Random Model* 11 5 v. 11 16 704.90 756.34 -336.45 13.91 .016 

Reduced Model 12 2 v. 12 10 703.18 735.33 -341.59 147.30 < .001 

Note. LL = Log Likelihood. *The random slope for SEBS was eliminated as it made the weakest contribution to overall model fit.
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Table 6. Coefficient and Effect Size Estimates for Multilevel Models Predicting Percent of Time On-Task 

Note. ICC = intraclass correlation. The t statistic and associated degrees of freedom for each fixed effect predictor was converted to correlation effect size estimate r to enhance 

interpretability; r > .10 = small, r > .30 = medium, r > .50 = large; a p < .05, b p < .01, c p < .001.

Model 

Random  

Intercept Only 

Level-1 Predictors: 

PTH 

Level-1 Predictors: 

PTH + WB 

Level-2 Predictors: 

Group Means 

Adjusted Full Random 

Model Reduced Model 

 

Estimate 

(SE) r 

Estimate 

(SE) r 

Estimate 

(SE) r 

Estimate 

(SE) r 

Estimate 

(SE) r 

Estimate 

(SE) r 

Fixed             

Intercept 7.42(.30) .88c 7.42(.31) .88c 7.41(.31) .88c 6.08(7.87) .06 7.61(6.97) .08 7.41(.31) .88c 

SIBS   -0.04(.04) -.07 0.06(.04) .13 0.06(.04) .12 0.06(.03) .12   

SEBS   -0.19(.03) -.45c -0.03(.05) -.05 -0.03(.05) -.05 -0.01(.05) -.01   

AES     0.27(.03) .56c 0.27(.03) .56c 0.28(.04) .50c 0.27(.03) .50c 

SPS     0.08(.06) .10 0.08(.06) .10 0.12(.06) .15a 0.11(.03) .25c 

SIBS means       -0.47(.19) -.68a -0.38(.16) -.66   

SEBS means       0.15(.32) .17 0.11(.28) .15   

AES means       0.30(.16) .57 0.22(.15) .50   

SPS means       0.02(.45) .02 -0.07(.39) -.07   

Random             

Level-1 residual variance  4.75  3.56  2.27  2.27  2.03  2.06  

Level-2 intercept variance  0.75  0.85  0.95  0.32  0.40  0.95  

Slope variance: AES --  --  --  --  0.005  0.006  

Slope variance: SPS --  --  --  --  0.002  0.001  

Model Effect Size             

Level-1 Pseudo R2 --  .23  .43  .54  .57  .47  

Level-2 Pseudo R2  --  .28  .55  .53  .58  .59  

ICC .13  .19  .29  .12  .16  .32  
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shows the comparative fixed effect predictor estimates, random variance components, and 

omnibus model effect size estimates at level-1 (students) and level-2 (teachers) for each 

successive model. The first stage of modeling tested the random intercept model and revealed 

significant variability in average time on-task across teacher raters and was thus retained. 

Specifically, the ICC suggested that 13% of the variability of time on-task estimates were 

accounted for purely by the teacher contextual variable. 

The next stage tested the incremental model improvement as each block of level-1 and -2 

fixed effect predictors were entered beginning with inclusion of the SIBS and SEBS total scores. 

Adding these level-1 PTH variables resulted in significant overall model improvement, but 

SEBS (r = -.45, p < .001; moderate effect) was the only significant individual predictor. AES and 

SPS total scores were then added in the next block as additional level-1 fixed effect predictors. 

Adding this block resulted in significant improvement in model fit over and above SIBS and 

SEBS alone. Furthermore, including the SWTRS variables resulted in AES (r = .56, p < .001; 

large effect) now being the only significant predictor of time on-task. Level-2 teacher means for 

each of the four level-1 predictors were then added as the last fixed effect block. This also 

resulted in significant overall model improvement with both AES (r = .56, p < .001; large effect) 

and SIBS means (r = -.68, p < .05; large effect) as significant individual predictors. This model 

containing all level-1 and -2 fixed effects was deemed the preferred fixed effects model. 

Random slopes for the relation between each level-1 predictor and time on-task were 

tested individually for significant variability across teachers in the next modeling stage. SEBS 

(slope variance = 0.004), AES (slope variance = 0.006), and SPS (slope variance = 0.003) each 

showed significant variability across teachers but when random slopes for all three variables 

were included as a collective block, there was not significant improvement in overall model fit. 
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Examination of each variable’s respective model fit statistics revealed the random slope term for 

SEBS contributed the least to overall fit improvement and was thus removed from the model. 

Retaining only the AES (slope variance = 0.005) and SPS (slope variance = 0.002) random slope 

terms resulted in significant overall model improvement and was thus considered the preferred 

(adjusted) full random model. The AES (r = .50, p < .001; large effect) and SPS (r = .15, p < .05; 

small effect) fixed effect variables were the only significant individual predictors of time on-task 

in this model. 

The final modeling stage involved removal of all non-significant fixed effect predictors 

from the adjusted full random model to test the comparative fit of a more parsimonious, reduced 

model. This model retained the significant AES (r = .50, p < .001; large effect) and SPS (r = .25, 

p < .001; small effect) level-1 predictors, and their respective random slope variance terms (AES 

= 0.006; SPS = 0.001). The model also resulted in significantly improved overall model fit 

compared to the random intercept model. Comparison of the fit indices between this model and 

the adjusted full random model suggested that the reduced model was preferred for predicting 

time on-task as it showed the strongest balance between model fit and conceptual parsimony. 

This reduced model also functioned as the SWTRS only model and ultimately accounted for 

approximately 47% of variance at level-1 and 59% at level-2. 

 Absences. Residual errors from the multilevel models predicting number of absences 

were visually inspected and showed adequately normal distribution and homoscedastic variance. 

Table 7 shows the model fit indices for increasingly complex multilevel models. Table 8 shows 

the comparative fixed effect predictor estimates, random variance components, and omnibus 

model effect size estimates at level-1 (students) and level-2 (teachers) for each successive model. 

The first stage of modeling revealed that 32% of the variability in number of absences was 
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Table 7. Fit Comparisons for Multilevel Models Predicting Number of Absences 

Model Description 

Model 

Number 

Model 

Comparison df AIC BIC LL LL Ratio p 

Fixed Intercept 1 -- 2 823.38 829.81 -409.69 -- -- 

Random Intercept 2 

 

1 v. 2 3 783.45 793.09 -388.73 41.93 < .001 

 

Level-1 Predictors: PTH 3 

 

2 v. 3 5 780.98 797.05 -385.49 6.47 .039 

 

Level-1 Predictors: PTH + WB 4 

 

3 v. 4 7 780.76 803.27 -383.38 4.21 .122 

Level-2 Predictors: Group means 5 

 

4 v. 5 11 779.29 814.65 -378.64 9.47 .050 

Random slope: SIBS 6 5 v. 6 13 780.10 821.89 -377.05 3.19 .203 

 

Random slope: SEBS 7 5 v. 7 13 793.29 825.09 -378.65 0.00 .999 

Random slope: AES 8 5 v. 8 13 783.23 825.02 -378.62 0.06 .971 

Random slope: SPS 9 5 v. 9 13 793.06 824.86 -379.53 0.23 .892 

Reduced Model 10 2 v. 10 4 776.14 789.00 -384.07 9.31 .002 

SWTRS Only Model 11 2 v. 11 5 778.14 794.22 -384.07 9.31 .010 

Note. LL = Log Likelihood. 
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Table 8. Coefficient and Effect Size Estimates for Multilevel Models Predicting Number of Absences 

Note. ICC = intraclass correlation. The t statistic and associated degrees of freedom for each fixed effect predictor was converted to correlation effect size estimate r to enhance 

interpretability; r > .10 = small, r > .30 = medium, r > .50 = large; a p < .05, b p < .01, c p < .001. 

 

Model 

Random Intercept 

Only 

Level-1 Predictors:  

PTH 

Level-1 Predictors:  

PTH + WB 

Level-2 Predictors:  

Group Means 

Reduced  

Model 

SWTRS Only  

Model 

 

Estimate 

(SE) r 

Estimate 

(SE) r 

Estimate 

(SE) r 

Estimate  

(SE) r 

Estimate 

(SE) r 

Estimate  

(SE) r 

Fixed             

Intercept 2.73(.42) .44c 2.73(.43) .44c 2.73(.43) .44c -16.81(10.96) -.12 2.73(.43) .44c 2.73(.43) .44c 

SIBS   0.06(.04) .12 0.04(.04) .07 0.04(.04) .07     

SEBS   0.03(.03) .08 0.03(.06) .04 0.03(.06) .04     

AES     -0.07(.04) -.16a -0.07(.04) -.15a -0.08(.03) -.23b -0.08(.03) -.19a 

SPS     0.04(.07) .05 0.04(.07) .05   0.00(.04) .00 

SIBS means       0.55(.27) .61     

SEBS means       0.29(.44) .24     

AES means       -0.30(.23) -.44     

SPS means       1.35(.62) .63     

Random             

Level-1 residual variance  3.47  3.34  3.26  3.26  3.29  3.29  

Level-2 intercept variance  1.90  1.91  1.92  0.75  1.92  1.92  

Model Effect Size             

Level-1 Pseudo R2 --  .02  .04  .25  .03  .03  

Level-2 Pseudo R2  --  .04  .06  -.01  .05  .05  

ICC .35  .36  .37  .19  .37  .37  
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accounted for by the teacher-rater contextual variable. The significant random intercept term was 

thus retained for subsequent models. 

The first block of the fixed effect modeling stage showed significant model fit 

improvement when the level-1 SIBS and SEBS total scores were included, although neither 

predictor accounted for a significant amount of unique variance individually. AES and SPS total 

scores were then added in the next block as additional level-1 fixed effect predictors but did not 

contribute to significant improvement in model fit over and above SIBS and SEBS alone. 

Despite this, AES (r = -.16, p < .05; small effect) was the only significant individual predictor 

included in this model. Although inclusion of the WB block resulted in non-significant fit 

improvement, the variables were retained in subsequent models due to the possibility that adding 

level-2 group means or random slope terms could change conclusions about the predictors’ 

explanatory contributions to the dependent variable. Level-2 teacher means for each of the for 

level-1 predictors were next added as the last fixed effect block. This resulted in marginally 

significant model improvement over the WB block with AES (r = -.15, p < .05; small effect) 

again being the only significant individual predictor. This model containing all level-1 and -2 

fixed effects was the preferred fixed effects model. 

Random slopes for the relation between each level-1 predictor and number of absences 

were tested individually for variability across teachers in the following stage but none resulted in 

significant model improvement. As a result, no preferred random model was identified for 

predicting number of absences. 

Selecting the significant model terms from the preferred fixed effect model, a reduced 

model was then tested that included AES (r = -.23, p < .01; small effect) as the only predictor. Fit 

indices suggested that this reduced model showed significant overall model improvement 
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compared to the random intercept model and best balanced parsimony with statistical fit of all 

previously tested models. However, the reduced model accounted for much less level-1 variance 

(~5%) in predicting absences than did the preferred fixed effect model (~25%). 

Finally, the SPS predictor was added back in to the reduced model in order to test the 

concurrent prediction power of the SWTRS variables alone. Although the unique contribution of 

SPS was extremely negligible, resulting in a somewhat less parsimonious model than the reduced 

model, SWTRS only nonetheless showed significant improvement in fit over the random 

intercept model as predicted. The amount of variance accounted for at level-1 and -2 was 

virtually identical to the reduced model with AES as the sole significant predictor (r = -.19, p < 

.05; small effect). 

 Math Achievement. Residual errors from the multilevel models predicting student math 

achievement relative to grade-level norms were visually inspected and showed adequately 

normal distribution and homoscedastic variance. Table 9 shows the model fit indices for 

increasingly complex multilevel models. Table 10 shows the comparative fixed effect predictor 

estimates, random variance components, and omnibus model effect size estimates at level-1 

(students) and level-2 (teachers) for each successive model. The first stage of modeling indicated 

variability in math achievement variance across teachers was essentially 0, suggesting that 

subsequent models should maintain a fixed intercept yet still test for significant variability in 

model slopes. Note that all estimates for level-2 intercept variance and ICC in Table 10 are 0 and 

level-2 pseudo R2 values are identical to level-1 values across all models. This was an artifact of 

keeping the model intercepts fixed. Despite this, these estimates remain in Table 10 to maintain 

consistency with the other tables.
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Table 9. Fit Comparisons for Multilevel Models Predicting Math Performance 

Note. LL = Log Likelihood. *Also the Full Random Model as AES had the only significant random slope. 

Model Description 

Model 

Number 

Model 

Comparison df AIC BIC LL LL Ratio p 

Fixed Intercept 1 -- 2 521.84 528.27 -258.92 -- -- 

Random Intercept 2 

 

1 v. 2 3 523.84 533.48 -258.92 0.00 > .999 

 

Level-1 Predictors: PTH 3 

 

1 v. 3 4 515.11 527.97 -253.55 10.73 .005 

 

Level-1 Predictors: PTH + WB 4 

 

3 v. 4 6 459.02 478.31 -223.51 60.09 < .001 

Level-2 Predictors: Group means 5 

 

4 v. 5 10 461.93 494.08 -220.97 5.08 .279 

Random slope: SIBS 6 4 v. 6 7 460.90 483.41 -223.45 0.12 .734 

 

Random slope: SEBS 7 4 v. 7 7 461.02 483.52 -223.51 0.00 .967 

Random slope: AES* 8 4 v. 8 7 451.14 473.65 -218.57 9.88 .002 

Random slope: SPS 9 4 v. 9 7 461.02 483.52 -223.51 0.00 .966 

Reduced Model 10 1 v. 10 4 451.85 464.71 -221.92 73.98 < .001 

SWTRS Only Model 11 1 v. 11 5 449.01 465.08 -219.50 78.83 < .001 
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Table 10. Coefficient and Effect Size Estimates for Multilevel Models Predicting Math Performance 

Note. ICC = intraclass correlation. The t statistic and associated degrees of freedom for each fixed effect predictor was converted to correlation effect size estimate r to enhance 

interpretability; r > .10 = small, r > .30 = medium, r > .50 = large; a p < .05, b p < .01, c p < .001

Model 

Random Intercept 

Only 

Level-1 Predictors:  

PTH 

Level-1  

Predictors:  

PTH + WB 

Level-2  

Predictors:  

Group Means 

 

Full  

Random Model 

Reduced  

Model 

SWTRS Only 

Model 

 

Estimate 

(SE) r 

Estimate 

(SE) r 

Estimate 

(SE) r 

Estimate 

(SE) r 

Estimate 

(SE) r 

Estimate  

(SE) 

 

r 

Estimate 

(SE) r 

Fixed                

Intercept 2.68(.07) .94c 2.68(.07) .94c 2.68(.06) .96c 1.07(2.69) .03 2.68(.06) .96c 2.68(.06)  .96c 2.68(.06) .96c 

SIBS   -0.04(.02) -.14 0.01(.02) .10 0.01(.02) .04 0.03(.02) .10      

SEBS   -0.02(.01) -.11 -0.02(.03) -.02 -0.02(.03) -.07 -0.01(.02) -.02      

AES     0.14(.02) .39c 0.14(.02) .53c 0.15(.03) .39c 0.12(.02)  .35c 0.14(.02) .39c 

SPS     -0.07(.03) -.09 -0.07(.03) -.16a -0.04(.03) -.09    -0.04(.02) -.17a 

SIBS means       -0.04(.06) -.26        

SEBS means       0.09(.11) .30        

AES means       0.10(.05) .57        

SPS means       0.01(.15) .02        

Random                

Level-1 residual variance  0.98  0.92  0.66  0.65  0.58  0.60   0.59  

Level-2 intercept variance  0.00  0.00  0.00  0.00  0.00  0.00   0.00  

Slope variance: AES --  --  --  --  0.005  0.005   0.004  

Model Effect Size                

Level-1 Pseudo R2 --  .06  .32  .34  .41  .39   .40  

Level-2 Pseudo R2  --  .06  .32  .34  .41  .39   .40  

ICC .00  .00  .00  .00  .00  .00   .00  
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The first block of the fixed effect modeling stage showed significant model fit 

improvement when the level-1 SIBS and SEBS total scores were included, although neither 

predictor accounted for a significant amount of unique variance individually. AES and SPS total 

scores were then added in the next block as additional level-1 fixed effect predictors, resulting in 

significant model fit improvement over and above SIBS and SEBS alone. AES (r = .53, p < .001; 

large effect) and SPS (r = -.16, p < .05; small effect) were the only significant individual 

predictors in this model. Level-2 teacher means for each of the four level-1 predictors were next 

added as the last fixed effect block. This inclusion of level-2 predictors did not significantly 

improve model fit and level-1 predictor estimates remained effectively unchanged. The model 

including all level-1 PTH and WB predictors, but not level-2 means, was accepted as the 

preferred fixed effect model. 

Random slopes for the relation between each level-1 predictor and math achievement 

were tested individually for variability across teachers in the next modeling stage. Only the AES  

slopes were identified as varying significantly (slope variance = 0.005) while meaningfully 

improving model fit. Including this random slope term resulted in a significant, but somewhat 

weaker, AES fixed effect estimate (r = .39, p < .001; moderate effect) and reduced the SPS fixed 

effect relation with math achievement to non-significance. The variance accounted for in the 

model did however increase from 34% to 41%. This was the preferred random model.  

The significant AES variable maintained statistical significance when entered in to the 

reduced model as the sole predictor (r = .35, p < .001; moderate effect). Fit indices suggested 

that this reduced model showed significant overall model improvement compared to the fixed 

intercept-only model.
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Finally, reintroducing SPS into the reduced model resulted in significant improvement in 

model fit over the fixed intercept only model. This SWTRS only model also showed the best 

balance of parsimony with statistical fit of all models tested and accounted for approximately 

40% of the variance. Both AES (r = .39, p < .001; moderate effect) and SPS (r = -.17, p < .05; 

small effect) made significant individual contributions in explaining math performance. 

ELA Achievement. Residual errors from the multilevel models predicting student ELA 

achievement relative to grade-level norms were visually inspected and showed adequately 

normal distribution and homoscedastic variance. Table 11 shows the model fit indices for 

increasingly complex multilevel models. Table 12 shows the comparative fixed effect predictor 

estimates, random variance components, and omnibus model effect size estimates at level-1 

(students) and level-2 (teachers) for each successive model. The first stage of modeling indicated 

that, like math achievement, ELA achievement variance across teachers was effectively 0, 

suggesting that subsequent models should maintain a fixed intercept but still test for the presence 

of significant slope variability. Note that all estimates for level-2 intercept variance and ICC in 

Table 12 are 0 and level-2 pseudo R2 values are identical to level-1 values across all models. This 

was an artifact of maintaining fixed intercepts in all of the models. Despite this, these estimates 

were left in Table 12 to maintain consistency with the other tables. 

The first block of the fixed effect modeling stage showed significant model fit 

improvement when the level-1 SIBS and SEBS total scores were included, with SEBS 

significantly predicting ELA achievement uniquely (r = -.16, p < .05; small effect). AES and 

SPS total scores were then added in the next block as additional level-1 fixed effect predictors 

resulting in significant overall model fit improvement beyond the SIBS and SEBS block alone. 

AES (r = .44, p < .001; moderate effect) was the only significant individual predictor in this 
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Table 11. Fit Comparisons for Multilevel Models Predicting ELA Performance 

Note. LL = Log Likelihood. *Also the Full Random Model as AES had the only significant random slope.

Model Description 

Model 

Number 

Model 

Comparison df AIC BIC LL LL Ratio p 

Fixed Intercept 1 -- 2 531.46 537.89 -263.73 -- -- 

Random Intercept 2 

 

1 v. 2 3 533.46 543.11 -263.73 0.00 > .999 

 

Level-1 Predictors: PTH 3 

 

1 v. 3 4 519.39 532.25 -255.69 16.07 < .001 

 

Level-1 Predictors: PTH + WB 4 

 

3 v. 4 6 483.85 503.14 -235.93 39.54 < .001 

Level-2 Predictors: Group means 5 

 

4 v. 5 10 484.06 516.21 -232.03 7.79 .100 

Random slope: SIBS 6 4 v. 6 7 485.02 507.53 -235.51 0.83 .363 

 

Random slope: SEBS 7 4 v. 7 7 485.05 507.55 -235.52 0.80 .370 

Random slope: AES* 8 4 v. 8 7 475.61 498.11 -230.81 10.24 .001 

Random slope: SPS 9 4 v. 9 7 484.61 507.12 -235.31 1.24 .265 

Reduced Model 10 1 v. 10 4 470.55 483.41 -231.27 64.91 < .001 

SWTRS Only Model 11 1 v. 11 5 472.04 488.11 -231.02 65.43 < .001 
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Table 12. Coefficient and Effect Size Estimates for Multilevel Models Predicting ELA Performance 

Note. ICC = intraclass correlation. The t statistic and associated degrees of freedom for each fixed effect predictor was converted to correlation effect size estimate r to enhance 

interpretability; r > .10 = small, r > .30 = medium, r > .50 = large; a p < .05, b p < .01, c p < .001.

Model 

Random Intercept 

Only 

Level-1  

Predictors:  

PTH 

Level-1  

Predictors:  

PTH + WB 

Level-2  

Predictors:  

Group Means 

 

Full  

Random Model 

Reduced  

Model 

SWTRS Only 

Model 

 

Estimate 

(SE) r 

Estimate 

(SE) r 

Estimate 

(SE) r 

Estimate 

(SE) r 

Estimate 

(SE) r 

Estimate 

(SE) 

 

r 

Estimate 

(SE) r 

Fixed                

Intercept 2.62(.07) .94c 2.62(.07) .94c 2.62(.07) .95c 4.60(2.86) .16 2.62(.06) .96c 2.62(.06)  .96c 2.62(.06) .96c 

SIBS   -0.04(.02) -.14 -0.00(.02) -.00 -0.00(.02) -.00 0.01(.02) .05      

SEBS   -0.03(.01) -.16a -0.02(.03) -.06 -0.02(.03) -.06 -0.00(.03) -.01      

AES     0.11(.02) .44c 0.11(.02) .45c 0.12(.03) .34c 0.11(.02)  .34c 0.11(.02) .34c 

SPS     -0.04(.03) -.09 -0.04(.03) -.09 -0.01(.03) -.03    -0.01(.02) -.05 

SIBS means       -0.07(.07) -.39        

SEBS means       -0.05(.11) -.17        

AES means       0.09(.05) .54        

SPS means       -0.17(.16) -.37        

Random                

Level-1 residual variance  1.03  0.94  0.76  0.73  0.67  0.68   0.68  

Level-2 intercept variance  0.00  0.00  0.00  0.00  0.00  0.00   0.00  

Slope variance: AES --  --  --  --  0.004  0.004   0.003  

Model Effect Size                

Level-1 Pseudo R2 --  .08  .26  .29  .34  .34   .34  

Level-2 Pseudo R2  --  .08  .26  .29  .34  .34   .34  

ICC .00  .00  .00  .00  .00  .00   .00  
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model. Level-2 teacher means for each of the four level-1 predictors were next added as the last fixed 

effect block but did not significantly improve overall model fit. Level-1 predictor estimates were 

again largely unchanged. The model including all level-1 PTH and WB predictors, but not level-2 

means, was accepted as the preferred fixed effects model. 

Random slopes for the relation between each level-1 predictor and ELA achievement were 

tested individually for variability across teachers in the next modeling stage but only the AES slopes 

were indicated as varying significantly (slope variance = 0.004) and meaningfully improving overall 

model fit. Including this random slope term resulted in a significant, but somewhat weaker, AES 

fixed effect (r = .34, p < .001; moderate effect). The variance accounted for in the model did however 

increase from about 29% to 34%. This was the preferred full random model. 

The significant AES variable maintained statistical significance when entered in to the 

reduced model as the sole predictor (r = .34, p < .001; moderate effect). Fit indices suggested that this 

reduced model showed significant overall model improvement compared to the fixed intercept model 

and best balanced parsimony with statistical fit of all tested models. This reduced model accounted 

for approximately 34% of the variance in ELA achievement. 

Reintroducing the SPS predictor into the model resulted in significant improvement overall 

compared to the fixed intercept model, as predicted. This SWTRS only model had the second 

strongest fit after the reduced model and similarly explained about 34% of the total variance. AES 

was again the only significant individual predictor (r = .34, p < .001; moderate effect).
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Discussion 

The idea that positive aspects of youth mental health should be included in school-based 

mental health screening is continuing to gain traction among scholars and school practitioners alike. 

As several studies have suggested (e.g., Renshaw & Cohen, 2014; Suldo & Shaffer, 2008), the 

standard unidimensional model of mental health that equates the absence of problems with the 

presence of wellbeing may in fact be overly simple. The dual-factor mental health model posits that 

mental health could be alternatively conceptualized as existing along two related but distinct 

continua––PTH and WB. The model offers increased nuance to our understanding of what makes for 

complete mental health and may also contribute to greater precision in identifying and prioritizing 

youth with higher or lower levels of mental health risk (Dowdy et al., 2014). For instance, while 

students A and B may both be experiencing significant symptoms of distress in their lives, if student 

A also experiences a greater frequency of wellbeing behaviors (e.g., positive peer relationships, 

feelings of excitement) than student B, the dual-factor model would suggest that student A may 

actually have better school-related outcomes due to the protective nature of the higher wellbeing. 

Considering the above logic, the present study had two broad aims related to understanding 

youth WB in the school context. The first aim was to investigate the structural validity of teacher-

report items developed to assess a theoretical model of student WB composed of “feeling good” and 

“functioning well” dimensions, which has historically been validated only through self-report 

measures (e.g., Keyes & Annas, 2009). This was examined through the initial development of an item 

pool of school-specific student WB behaviors and subsequent reduction of the pool to brief scales—

the SWTRS—potentially suitable for use in universal mental health screening. The second aim 

concerned investigating the concurrent validity of SWTRS scores via correlating with their 

counterpart PTH scores as well as in predicting important school-related concurrent outcomes, both 
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with and without PTH scale scores included as additional predictor variables. Taken together, the 

aims of the present study were intended to provide initial evidence in support of the technical 

adequacy of a new brief teacher-report measure that might be useful for assessing student wellbeing 

within a dual-factor mental health screening framework in schools. 

Structural Validity 

 Evidence from the series of exploratory factor analyses showed unambiguously that the 

FG/FW model of WB did not generalize as hypothesized to the SWTRS item pool. Nevertheless, two 

distinct latent factors consistently emerged in each EFA: (a) a student prosocial behavior factor (SPS; 

example items: “friendly with classmates,” “shows self-control when frustrated”) and (b) an academic 

engagement factor (AES; example items: “comfortable working independently,” 

“inquisitive/interested in learning new things”). Despite not representing the FG/FW model well, the 

AES and SPS still appear to measure important indicators of positive mental health (Cowen & 

Kilmer, 2002).  

In fact, a developing base of empirical work validating the Social, Academic, and Emotional 

Behavior Risk Screener (SAEBRS; see Kilgus, Chafouleas, & Riley-Tillman, 2013; von der Embse, 

Pendergast, Kilgus, & Eklund, 2015; Kilgus, Eklund, von der Embse, Taylor, & Sims, 2016) has 

yielded similar teacher-report scales to the SWTRS, albeit by using an alternate theoretical lens. The 

primary difference is that the SAEBRS development was informed in part by the theory of “academic 

enablers” (Kilgus et al., 2013), which suggests that display of adaptive social and academic work-

related behaviors, along with withholding maladaptive behaviors, is associated with academic 

achievement (DiPerna, 2006; Volpe et al., 2006). In comparison, the SWTRS development was 

informed by the youth wellbeing literature which suggests that the measurement of positive behaviors 

has larger utility in understanding youth mental health beyond only predicting academic risk. While 
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there is overlap in the types of behaviors measured in the SAEBRS and SWTRS, the subscales are 

conceptually distinct enough to warrant use in differing universal screening applications depending 

on the school’s goals. Because both measures have been associated with school-related outcomes, 

future research could investigate the comparative predictive validity of scores derived from both 

measures to empirically demonstrate if one is more strongly associated with school outcomes than 

another. 

Considering the item content of the SWTRS in light of past research, it appears that both AES 

and SPS assess broad meta-constructs that each contain items related to more specific sub-domains 

that have been targeted in other measure development research driven by different conceptual models. 

For example, although there is wide disagreement among scholars concerning the definition and 

important features of school engagement (see Appleton, Christenson, & Furlong [2008] and Fredricks 

et al. [2011] for overviews of competing theories and measurement approaches), a three-factor model 

has received the most substantial support in the literature (Jimerson, Campos, & Greif, 2003). This 

tripartite model suggests that measuring (a) behavioral, (b) cognitive, and (c) emotional or affective 

dimensions of engagement are critical components to include when measuring the construct 

(Fredricks, Blumenfeld, & Harris, 2004). The use of this engagement model has precedence in past 

dual-factor mental health work, such as in Lyons, Huebner, and Hills’ (2012) study that used 

measures of each of the three dimensions as outcomes predicted by subjective WB scores. Consistent 

with this model, the AES items appear to relate to all three of these dimensions of school 

engagement.  

Similarly, the SPS contains item content similar to a five-factor model of social skills 

consisting of (a) peer relations, (b) self-management, (c) academic behaviors, (d) compliance, and (e) 

assertion. Support for this model came originally through meta-analysis of item content within 
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several social skills rating scales (Caldarella & Merrell, 1997). The factor analytic evidence in 

Caldarella and Merrell’s study suggested that these five dimensions were the most commonly 

assessed domains of social skills, although considerable conceptual overlap was also suggested 

among the domains. Further evidence was found for this model through later qualitative research 

investigating which youth social skills were considered most important to children, parents, and 

teachers (Warnes, Sheridan, Geske, & Warnes, 2005). 

In contrast to the proposed cross-context FG/FW model, where students’ “feeling good” and 

“functioning well” behaviors are assumed to be consistent across situations, the results from the 

present study suggest that student WB behaviors at school may be better understood as a function of 

context (i.e., in social situations and during academic activities) when the teacher is the informant. As 

previously stated, the FG/FW model was originally developed from self-report evidence, which 

allows for greater reliability and validity of private behavior measurement as compared to informant-

report (Merrell, 2008). Because of this, the developed SWTRS items were specifically worded in 

terms of observable public behaviors to lower the level of inference for teacher ratings. 

Although the SWTRS latent factors did not appear as hypothesized, AES and SPS were still 

compared to the SIBS and SEBS to see if the scale constructs could be adequately discriminated. As 

before, when operating from the FG/FW framework, evidence from bivariate correlations of the PTH 

and WB variables that were non-trivial but not so large to conclude they were measuring the same 

thing was considered support for their distinction. Results from the MLM analyses that showed the 

addition of WB variables improved model fit in explaining the outcome over and above PTH was 

considered additional evidence for the dual-factor framework. 

Three of the four correlations between the PTH and SWTRS scales’ scores showed 

associations bordering between medium and large effects. These estimates were on the upper end of 
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what was expected from the dual-factor perspective, yet were still largely consistent with the 

hypothesized magnitude of relation. Moreover, these results were in line with what Earhart et al. 

(2009) found in their dual-factor MH study of the correlations among various student WB (i.e., hope, 

life satisfaction, school connectedness) and PTH indicators (i.e., student- and teacher-report BESS 

scores). In contrast, SPS and SEBS showed a very large negative correlation similar to the correlation 

found between the SABRS Social Behavior scale and the Social Skills Improvement System-Social 

Skills scale (Kilgus et al., 2013). The subsequent EFA that included all SIBS, SEBS, AES, and SPS 

items resulted in a three factor solution where the SEBS and SPS loaded together on a single factor 

while the AES and SIBS were mostly distinct entities. This is consistent with empirical evidence 

from SAEBRS structural validation research that showed the presence of three unique factors—

Academic Behavior (cf. AES), Social Behavior (cf. SPS, SEBS), and Emotional Behavior (cf. SIBS) 

where Academic and Social Behavior scales contained both positive and negatively worded items 

(von der Embse et al., 2015). The unidimensionality of social skills versus social deficits is further 

backed by theoretical work suggesting a conceptually inverse relation between the two (cf. Caldarella 

& Merrell, 1997; Quay, 1986). Altogether, it was concluded that the SPS is best described as 

measuring a positive inverse of externalizing behavior problems rather than a unique aspect of WB 

like the AES. 

Interestingly, the SIBS—the PTH complement to the “feeling good” factor originally 

hypothesized—showed at least adequate internal consistency both in past research (e.g., Cook et al., 

2011) and the current sample despite also focusing exclusively on the public manifestations of 

internal experiences for teacher-report. It is important to note that the SIBS and SEBS items were not 

developed through factor analytic means, as in the present study, but only through literature review 

and selection of the 14 most relevant “internalizing” and “externalizing” youth problem behaviors as 
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rated by content experts (Cook, 2013). It is not completely clear whether substantive differences exist 

between the theoretical structures of youth PTH and WB or if the discrepancies in scale development 

methodology better account for the lack of FG/FW evidence in this study, although evidence from the 

SAEBRS development suggests the former (e.g., von der Embse, 2015). 

Concurrent and Incremental Validity 

 In modeling the concurrent relations among the PTH and WB predictors and the four school 

outcomes—percent of time on-task during class, number of absences, math and ELA achievement—

multiple patterns emerged in the results. As hypothesized, models that included only the two WB 

variables as predictors resulted in significant improvement in model fit over the null model for all 

four outcome domains, consistent with similar past research (e.g., Kim, Furlong, Dowdy, & Felix, 

2014). Furthermore, these SWTRS only models were the strongest fitting overall for predicting time 

on-task and math achievement. Both WB indicators were significant individual predictors for the 

math achievement (cf. Suldo et al., 2011) and time on-task outcomes as well. SWTRS only models 

were also the second-best fitting for concurrently predicting absences and ELA achievement, after the 

reduced models, which both retained AES as the only significant individual predictor. These results 

broadly align with past findings that suggest significant associations of WB variables with important 

school-related outcomes (e.g., Lyons et al., 2012; Suldo et al., 2011). 

 Inclusion of the PTH block of predictors alone consistently resulted in significant 

improvements in model fit over the null models of all four outcome domains (cf. Kim et al., 2014). 

Although the PTH blocks showed significant fit for each outcome, SIBS never accounted for more 

than a negligible or small but non-significant portion of unique variance. On the other hand, SEBS 

did show a small individual effect predicting ELA achievement and a moderate effect predicting time 

on-task. Subsequently adding the two WB predictors to the models in a second block resulted in 
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significant improvements in model fit over the PTH predictors alone for all outcomes excluding 

number of absences. Multiple past studies corroborated this additive contribution of WB variables 

over and above PTH (e.g., Lyons et al., 2012; Kim et al., 2014). Despite the WB block not 

contributing significant improvement over the PTH block here, AES was the only significant 

individual predictor included in the model, accounting for a small portion of unique variance in 

absences. Moreover, the SWTRS only model showed superior fit over the null model as compared to 

the PTH block alone. This finding suggests that the contribution of WB behaviors in predicting 

school absences considerably diminishes when also factoring in the student’s relative level of 

internalizing and externalizing PTH behaviors. Including the SWTRS also resulted in the significant 

individual contributions of SEBS scores in predicting time on-task and ELA achievement to shrink to 

negligible effects (cf. Lyons et al., 2012). Considering this incremental validity evidence, support for 

a dual-factor model was largely found for predicting achievement and engagement outcome variables 

beyond using PTH variables in exclusivity. 

Given the evidence that the SEBS and SPS were negatively correlated but not structurally 

unique, it is reasonable that after SPS was included in the models, the predictor absorbed much of the 

unique variance previously accounted for by the SEBS alone. Despite this, these variables did not 

behave consistently as inverse yet equitable predictors as might be expected (e.g., Kilgus et al, 2013). 

First, SPS functioned as the stronger variable in predicting all four school outcomes in models that 

included all PTH and WB variables. Although this pattern was consistent, the advantage of SPS over 

SEBS was marginal for each outcome, apart from math achievement where the individual effect of 

SEBS was negligible while the effect of SPS was small yet significant.  

Second, the directionality of the predictor estimates for both variables was actually the same 

for models predicting absences (positive association) and both math and ELA achievement (negative 
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association), yet opposite for predicting time on-task (SPS: positive association; SEBS: negative 

association). While it is tempting to interpret this result as suggesting that a greater frequency of both 

disruptive and prosocial behavior may indicate greater risk in academic achievement and school 

attendance in a teacher-report mental health screening context, this pattern was not found when 

inspecting the bivariate correlations (see Table 4) among the predictor and outcome variables. In fact, 

the relations between the scales and the outcomes consistently showed opposite directionality for WB 

versus PTH predictors (e.g., AES and SPS positively correlated with math achievement while SIBS 

and SEBS showed a negative correlation). The need for additional study on this phenomenon is 

evident in order to clarify the discrepancy in the valence of the variable relations. 

Limitations and Future Directions 

 Although the results of the present study are interesting, these should be considered in light of 

a few important limitations and suggestions for future research. For instance, values of all concurrent 

student outcome variables were estimated solely from teacher-reports. Although convenient from a 

data collection standpoint, gathering all data exclusively from teacher-reports may have biased the 

results of the concurrent validity analyses due to the influence of common method variance 

(Podsakoff, MacKenzie, Lee, & Podsakoff, 2003). One approach future researchers could use to help 

control for this bias is to explicitly link each student’s teacher-estimated PTH and WB behavior 

frequency to outcomes derived from other measurement sources, such as standardized test scores for 

achievement, school records for number of absences, or direct behavior observations for classroom 

engagement (see Miller et al., 2015 for a comparison of various screening modalities that could be 

utilized in future SWTRS validation work). Regardless of the measurement procedures in future 

studies, analyzing all variables of interest with confirmatory factor analyses (e.g., Iverson & Maguire, 

2000) would allow for statistical control and estimation of common method variance (Podsakoff et 
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al., 2003). Furthermore, structural equation modeling approaches would offer a framework for 

estimating relations among all variables simultaneously to gain a more sophisticated understanding of 

their associations than is possible through more traditional multiple regression analyses (Kline, 2016). 

Additional construct validation work is also called for. Because the results indicated that the WB 

scales may represent broad meta-constructs that incorporate indicators of other sub-constructs, careful 

evaluation of these scales in relation to other established measures of student’s academic engagement 

and prosocial behavior is needed. 

 Even though evidence supporting the FG/FW model of WB was not found as hypothesized, 

the newly created item pool did nonetheless yield initial support for a structurally valid measure of 

two important indicators of youth WB at school. A logical next step is replication of these results 

with a larger, more diverse sample and use of more rigorous analysis methods (e.g., SEM). Beyond 

this, because the present study only investigated basic science questions related to the structural and 

concurrent validity of teacher-reported youth WB, future research should extend to test risk 

classification accuracy as well as the applied utility of these WB scales in various school-based 

service delivery contexts. Some examples may include examining how AES and SPS scores could be 

used to inform Tier 1 and 2 interventions or testing the relative sensitivity of the scores to change 

over time when used as progress monitoring instruments in a schoolwide MTSS for mental health. 

Having the ability to draw from a combination of both basic science validation and treatment utility 

evidence is ideal when considering which instruments would be most appropriate for a school’s 

universal mental health screening initiatives. 

 

 

 



www.manaraa.com

 

56 
 

References 

Albers, C. A., & Kettler, R. J. (2014). Best practices in universal screening. In P. Harrison & A. 

Thomas (Eds.), Best practices in school psychology: Data-based and collaborative decision 

making (pp. 121–131). Bethesda, MD: The National Association of School Psychologists. 

American Psychiatric Association. (2013). Major Depressive Disorder. In Diagnostic and statistical 

manual of mental disorders (5th ed.; pp. 160–168). Arlington, VA: American Psychiatric 

Publishing. 

Appleton, J. J., Christenson, S. L., & Furlong, M. J. (2008). Student engagement with school: Critical 

conceptual and methodological issues of the construct. Psychology in the Schools, 45, 369–

386. doi:10.1002/pits 

Armistead, R. J., & Smallwood, D. L. (2014). The National Association of School Psychologists 

model for comprehensive and integrated school psychological services. In P. Harrison & A. 

Thomas (Eds.), Best practices in school psychology: Data-based and collaborative decision 

making (pp. 9–23). Bethesda, MD: The National Association of School Psychologists. 

Bradshaw, C. P., Buckley, J. A., & Ialongo, N. S. (2008). School-based service utilization among 

urban children with early onset educational and mental health problems: The squeaky wheel 

phenomenon. School Psychology Quarterly, 23, 169–186. doi:10.1037/1045-3830.23.2.169 

Bryant, F. B., & Yarnold, P. R. (1995). Principal-components analysis and exploratory and 

confirmatory factor analysis. In L. G. Grimm & P. R. Yarnold (Eds.), Reading and 

understanding multivariate statistics (pp. 99–136). Washington, DC: American Psychological 

Association. 

Burns, B. J., Costello, E. J., Angold, A., Tweed, D., Stangl, D., Farmer, E. M., & Erkanli, A. (1995). 

Children's mental health service use across service sectors. Health Affairs, 14, 147–159. 

doi:10.1377/hlthaff.14.3.147 

Caldarella, P., & Merrell, K. W. (1997). Common dimensions of social skills of children and 

adolescents: A taxonomy of positive behaviors. School Psychology Review, 26, 264–278. 

Clark, L. A., & Watson, D. (1995). Constructing validity: Basic issues in objective scale 

development. Psychological Assessment, 7, 309–319. 

Cook, C. R. (2013). Manual: Student Internalizing Behavior Screener and Student Externalizing 

Behavior Screener. Unpublished manual. 

Cook, C. R., Rasetshwane, K. B., Truelson, E., Grant, S., Dart, E. H., Collins, T. A., & Sprague, J. 

(2011). Development and validation of the Student Internalizing Behavior Screener: 

Examination of reliability, validity, and classification accuracy. Assessment for Effective 

Intervention, 36, 71–79. doi:10.1177/1534508410390486 

Cowen, E. L., & Kilmer R. P. (2002). “Positive Psychology”: Some plusses and some open issues. 

Journal of Community Psychology, 30, 449–460. doi:10.1002/jcop.10014 



www.manaraa.com

 

57 
 

D’Agostino, R. B., Belanger, A., & D’Agostino Jr., R. B. (1990). A suggestion for using powerful 

and informative tests of normality. The American Statistician, 44, 316–321. 

DeVellis, R. F. (2012). Scale development: Theory and applications (3rd ed.; Vol. 26). Thousand 

Oaks, CA: SAGE publications, Inc. 

DiPerna, J. C. (2006). Academic enablers and student achievement: Implications for assessment and 

intervention services in the schools. Psychology in the Schools, 43, 7–17. 

doi:10.1002/pits.20125 

Dowdy, E., Furlong, M., Raines, T. C., Bovery, B., Kauffman, B., Kamphaus, R. W., ... & Murdock, 

J. (2014). Enhancing school-based mental health services with a preventive and promotive 

approach to universal screening for complete mental health. Journal of Educational and 

Psychological Consultation, 25, 179–197. doi:10.1080/10474412.2014.929951 

Dowdy, E., Ritchey, K., & Kamphaus, R. W. (2010). School-based screening: A population-based 

approach to inform and monitor children’s mental health needs. School Mental Health, 2, 

166–176. doi:10.1007/s12310-010-9036-3 

Earhart Jr., J., Jimerson, S. R., Eklund, K., Hart, S. R., Jones, C. N., Dowdy, E., & Renshaw, T. L. 

(2009). Examining relationships between measures of positive behaviors and negative 

functioning for elementary school children. The California School Psychologist, 14, 97–104. 

Eklund, K., & Dowdy, E. (2013). Screening for behavioral and emotional risk versus traditional 

school identification methods. School Mental Health, 6, 40–49. doi:10.1007/s12310-013-

9109-1  

Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel 

models: A new look at an old issue. Psychological Methods, 12, 121–138. doi: 10.1037/1082-

989X.12.2.121 

Field, A. (2013). Discovering statistics using IBM SPSS statistics. London, England: SAGE 

publications Ltd. 

Finch, W. H., Bolin, J. E., & Kelley, K. (2014). Multilevel modeling using R. Boca Raton, FL: Taylor 

& Francis. 

Fredricks, J., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, 

state of the evidence. Review of Educational Research, 74, 59–109. 

doi:10.3102/00346543074001059 

Fredricks, J., McColskey, W., Meli, J., Mordica, J., Montrosse, B., & Mooney, K. (2011). Measuring 

student engagement in upper elementary through high school: A description of 21 

instruments. (Issues & Answers Report, REL 2011–No. 098). Washington, DC: U.S. 

Department of Education, Institute of Education Sciences, National Center for Education 

Evaluation and Regional Assistance, Regional Educational Laboratory Southeast. Retrieved 

from http://ies.ed.gov/ncee/edlabs. 



www.manaraa.com

 

58 
 

Furlong, M. J., Gilman, R., & Huebner, E. S. (Eds.). (2014). Handbook of positive psychology in the 

schools (2nd ed.). New York, NY: Routledge. 

Furlong, M. J., You, S., Renshaw, T. L., O’Malley, M. D., & Rebelez, J. (2013). Preliminary 

development of the Positive Experiences at School Scale for elementary school children. 

Child Indicators Research, 6, 753–775. doi:10.1007/s12187-013-9193-7 

Glover, T. A., & Albers, C. A. (2007) Considerations for evaluating universal screening assessments. 

Journal of School Psychology, 45, 117–135. doi:10.1016/j.jsp.2006.05.005 

Greco, L. A., Lambert, W., & Baer, R. A. (2008). Psychological inflexibility in childhood and 

adolescence: Development and evaluation of the Avoidance and Fusion Questionnaire for 

Youth. Psychological Assessment, 20, 93–102. doi:10.1037/1040-3590.20.2.93  

Greenspoon, P. J., & Saklofske, D. H. (2001). Toward an integration of subjective wellbeing and 

psychopathology. Social Indicators Research, 54, 81–108. doi:10.1023/A:1007219227883 

Hayes, S. C., Nelson, R. O., & Jarrett, R. B. (1987). The treatment utility of assessment: A functional 

approach to evaluating assessment quality. American Psychologist, 42, 963– 974. 

Hox, J. J. (2010). Multilevel analysis: Techniques and applications (2nd ed.). New York, NY: 

Routledge. 

Huta, V. (2014). When to use hierarchical linear modeling. The Quantitative Methods for Psychology, 

10(1), 13–28. 

Individuals with Disabilities Education Improvement Act, 20 U.S.C. § 1400 et seq. (2004). 

Iverson, R. D., & Maguire, C. (2000). The relationship between job and life satisfaction: Evidence 

from a remote mining community. Human Relations, 53, 807–839. 

Jimerson, S. R., Campos, E., & Greif, J. L. (2003). Toward an understanding of definitions and 

measures of school engagement and related terms. California School Psychologist, 8, 7–27. 

Kamphaus, R. W., DiStefano, C., Dowdy, E., Eklund, K., & Dunn, A. R. (2010). Determining the 

presence of a problem: Comparing two approaches for detecting youth behavioral risk. School 

Psychology Review, 39, 395–407. 

Keyes, C. L. M. (2006). Mental health in adolescence: Is America’s youth flourishing? American 

Journal of Orthopsychiatry, 76, 395–402. doi:10.1037/0002-9432.76.3.395 

Keyes, C. L. M. (2007). Promoting and protecting mental health as flourishing: A complementary 

strategy for improving national mental health. American Psychologist, 62, 95–108. 

doi:10.1080/17439760902844228 

Keyes, C. L. M., & Annas, J. (2009). Feeling good and functioning well: Distinctive concepts in 

ancient philosophy and contemporary science. The Journal of Positive Psychology, 4, 197–

201. doi:10.1080/17439760902844228 



www.manaraa.com

 

59 
 

Kilgus, S. P., Chafouleas, S. M., & Riley-Tillman, T. C. (2013). Development and initial validation of 

the Social and Academic Behavior Risk Screener for elementary grades. School Psychology 

Quarterly, 28, 210–226. doi:10.1037/spq0000024 

Kilgus, S. P., Eklund, K., von der Embse, N. P., Taylor, C. N., & Sims, W. A. (2016). Psychometric 

defensibility of the Social, Academic, and Emotional Behavior Risk Screener (SAEBRS) 

Teacher Rating Scale and multiple gating procedure within elementary and middle school 

samples. Journal of School Psychology, 58, 21–39. doi:10.1016/j.jsp.2016.07.001 

Kim, E. K., Furlong, M. J., Dowdy, E., & Felix, E. D., (2014). Exploring the relative contributions of 

the strength and distress components of dual-factor complete mental health screening. 

Canadian Journal of School Psychology. Advance online publication. 

doi:10.1177/0829573514529567 

Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). New York, NY: 

Guilford Publications, Inc. 

Lane, K. L., Little, M. A., Casey, A. M., Lambert, W., Wehby, J., Weisenbach, J. L., & Phillips, A. 

(2009). A comparison of systematic screening tools for emotional and behavioral disorders. 

Journal of Emotional and Behavioral Disorders, 17, 93–105. doi:10.1177/1063426608326203 

Lane, K. L., Oakes, W., & Menzies, H. (2010). Systematic screenings to prevent the development of 

learning and behavior problems: Considerations for practitioners, researchers, and policy 

makers. Journal of Disability Policy Studies, 21, 160–172. doi:10.1177/1044207310379123 

Lyons, M. D., Huebner, E. S., & Hills, K. J. (2012). The dual-factor model of mental health: A short-

term longitudinal study of school-related outcomes. Social Indicators Research, 114, 549–

565. doi:10.1007/s11205-012-0161-2 

Marmorstein, N. R., Iacono, W. G., & Malone, S. M. (2010). Longitudinal associations between 

depression and substance dependence from adolescence through early adulthood. Drug and 

Alcohol Dependence, 107, 154–160. doi:10.1016/j.drugalcdep.2009.10.002 

Mathyssek, C. M., Olino, T. M., Velhurst, F. C., & van Oort, F. V. A. (2012). Childhood internalizing 

and externalizing problems predict the onset of clinical panic attacks over adolescence: The 

TRAILS study. PLoS ONE, 7, e51564. doi:10.1371/journal.pone.0051564 

Merikangas, K.J., He, J. P., Burstein, M., Sonja, A., Swanson, S.A., Avenevoli, S., ...& Swendsen, J. 

(2010). Lifetime prevalence of mental disorder in U.S. adolescents: Results from the national 

comorbidity study—Adolescent supplement (NCS-A). Journal of the American Academy of 

Child & Adolescent Psychiatry, 49, 980−989. doi:10.1016/ j.jaac.2010.05.017 

Merrell, K. W. (2008). Helping students overcome depression and anxiety: A practical guide (2nd 

ed.). New York, NY: Guilford Press. 

Miller, F. G., Cohen, D., Chafouleas, S. A., Riley-Tillman, T. C., Welsh, M. E., & Fabiano, G. A. 

(2015). A comparison of measures to screen for social, emotional, and behavioral risk. School 

Psychology Quarterly, 30, 184–196. doi:10.1037/spq0000085 



www.manaraa.com

 

60 
 

National Association of School Psychologists (2010). Model for comprehensive and integrated school 

psychological services. Retrieved from 

http://www.nasponline.org/standards/2010standards/2_PracticeModel.pdf 

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team (2016). nlme: Linear and nonlinear 

mixed effects models. R package version 3.1-128. Retrieved from http://CRAN.R-

project.org/package=nlme. 

Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases 

in behavioral research: A critical review of the literature and recommended remedies. Journal 

of Applied Psychology, 88, 879–903. doi:10.1037/0021-9010.88.5.879 

Quay, H. C. (1986). Classification. In H. C. Quay & J. S. Werry (Eds.), Psychopathological disorders 

of childhood (3rd ed., pp. 1–34). New York: Wiley. 

R Core Team (2016). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/. 

Rapport, M. D., Denney, C. B., Chung, K.-M., & Hustace, K. (2001). Internalizing behavior problems 

and scholastic achievement in children: Cognitive and behavioral pathways as mediators of 

outcome. Journal of Clinical Child & Adolescent Psychology, 30, 536–551. 

doi:10.1207/S15374424JCCP3004_10 

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data 

analysis methods (2nd ed.). Thousand Oaks, CA: SAGE Publications, Inc. 

Renshaw, T. L. (2015). A replication of the technical adequacy of the Student Subjective Wellbeing 

Questionnaire. Journal of Psychoeducational Assessment, 1–12. 

doi:10.1177/0734282915580885 

Renshaw, T. L., & Cohen, A. S. (2014). Life satisfaction as a distinguishing indicator of college 

student functioning: Further validation of the two-continua model of mental health. Social 

Indicators Research, 117, 319–334. doi:10.1007/s11205-013-0342-7 

Renshaw, T. L., Furlong, M. J., Dowdy, E., Rebelez, J., Smith, D. C., O’Malley, M. D., . . . Frugård 

Strøm, I. (2014). Covitality: A synergistic conception of youths’ mental health. In M. J. 

Furlong, R. Gilman & E. S. Huebner (Eds.), Handbook of positive psychology in the schools 

(2nd ed., pp. 12–32). New York, NY: Routledge. 

Renshaw, T. L., Long, A. C. J., & Cook, C. R. (2014). Assessing adolescents’ positive psychological 

functioning at school: Development and validation of the Student Subjective Wellbeing 

Questionnaire. School Psychology Quarterly. Advance online publication. 

doi:10.1037/spq0000088 

Rudolph, K. D., & Klein, D. N. (2009). Exploring depressive personality traits in youth: Origins, 

correlates, and developmental consequences. Development and Psychopathology, 21, 1155–

1180. doi:10.1017/S0954579409990095 



www.manaraa.com

 

61 
 

Seligman, M. E. P. (2002). Positive psychology, positive prevention, and positive therapy. In C. R. 

Snyder & S. J. Lopez (Eds.), Handbook of positive psychology (pp. 3–12). New York, NY: 

Oxford University Press. 

Seligman, M. E. P., & Csikszentmihalyi, M. (2000). Positive psychology: An introduction.  American 

Psychologist, 55, 5–14. doi:10.1037//0003-066X.55.1.5 

Snijders, T. A. B., & Bosker, R. J. (1999) Multilevel Analysis: An introduction to basic and advanced 

multilevel modeling. Thousand Oaks, CA: SAGE Publications, Inc. 

Stoiber, K. C. (2014). A comprehensive framework for multitiered systems of support in school 

psychology. In P. Harrison & A. Thomas (Eds.), Best practices in school psychology: Data-

based and collaborative decision making (pp. 41–70). Bethesda, MD: The National 

Association of School Psychologists. 

Strein, W., Hoagwood, K., & Cohn, A. (2003). School psychology: A public health perspective I. 

Prevention, populations, and systems change. Journal of School Psychology, 41, 23–38. 

doi:10.1016/S0022-4405(02)00142-5 

Suldo, S., Thalji, A., & Ferron, J. (2011). Longitudinal academic outcomes predicted by early 

adolescents’ subjective wellbeing, psychopathology, and mental health status yielded from a 

dual factor model. The Journal of Positive Psychology, 6, 17–30. 

doi:10.1080/17439760.2010.536774 

Suldo, S. M. & Shaffer, E. J. (2008). Looking beyond psychopathology: The dual-factor model of 

mental health in youth. School Psychology Review, 37, 52–68. Retrieved from: 

https://www.researchgate.net/publication/228656864 

Volpe, R. J., DuPaul, G. J., DiPerna, J. C., Jitendra, A. K., Lutz, J. G., Tresco, K., & Junod, R. V. 

(2006). Attention deficit hyperactivity disorder and scholastic achievement: A model of 

mediation via academic enablers. School Psychology Review, 35, 47– 61. 

von der Embse, N. P., Pendergast, L. L., Kilgus, S. P., & Eklund, K. R. (2015). Evaluating the 

applied use of a mental health screener: Structural validity of the Social, Academic, and 

Emotional Behavior Risk Screener. Psychological Assessment. Advance online publication. 

doi:10.1037/pas0000253 

Warnes, E. D., Sheridan, S. M., Geske, J., & Warnes, W. A. (2005). A contextual approach to the 

assessment of social skills: Identifying meaningful behaviors for social competence. 

Psychology in the Schools, 42, 173–187. doi:10.1002/pits.20052 

Whitley, B. E., & Kite, M. E. (2012). Factor analysis, path analysis, and structural equation modeling. 

In Author (Eds.), Principles of research in behavioral science (3rd ed.; pp. 338–361). New 

York, NY: Routledge. 

Wickham, H. (2014). Tidy data. The Journal of Statistical Software, 59, 1–24. Retrieved from: 

http://www.jstatsoft.org/v59/i10/ 



www.manaraa.com

 

62 
 

World Health Organization. (2004). Promoting mental health: Concepts, emerging evidence, practice 

(Summary report). Geneva: Author. Retrieved from: 

http://www.who.int/mental_health/evidence/en/promoting_mhh.pdf 

Ysseldyke, J., & Reschly, D. J. (2014). The evolution of school psychology: Origins, contemporary 

status, and future directions. In P. Harrison & A. Thomas (Eds.), Best practices in school 

psychology: Data-based and collaborative decision making (pp. 71–84). Bethesda, MD: The 

National Association of School Psychologists. 

 

 

 

 

 

 

 



www.manaraa.com

 

63 
 

Appendix A 

IRB Approval 
 

 
 

 

 



www.manaraa.com

 

64 
 

Appendix B 

Teacher Demographic Survey 

 

 
 



www.manaraa.com

 

65 
 

 
 

 

 

 



www.manaraa.com

 

66 
 

Appendix C 

Student Behavior Survey 

 

 
 



www.manaraa.com

 

67 
 

 



www.manaraa.com

 

68 
 

 
 



www.manaraa.com

 

69 
 

 
 

 

 

 

 



www.manaraa.com

 

70 
 

Vita 

 

 A native of St. Louis, Missouri, Anthony J. Roberson graduated with honors from Truman 

State University in 2013. At TSU, he received a Bachelor of Science degree in Psychology and 

completed minors in Statistical Methods and Music. He has since enrolled in graduate school at 

Louisiana State University where he is pursuing his Ph.D. in School Psychology under the 

mentorship of Dr. Tyler Renshaw. His research interests broadly concern youth wellbeing and 

improving psychological service delivery within school systems. 


	Louisiana State University
	LSU Digital Commons
	2016

	Initial Development and Validation of the Student Wellbeing Teacher-Report Scales
	Anthony Joseph Roberson
	Recommended Citation


	tmp.1519413940.pdf.hzSrG

